Викия

Виртуальная лаборатория

Атомная орбиталь

204 615статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Атомная орбиталь — одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n, орбитальным l и магнитным m квантовыми числами.

Название «орбиталь» (а не орбита) отражает геометрическое представление о движении электрона в атоме; такое особое название отражает тот факт, что движение электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории.

Квантовые числа и номенклатура орбиталейПравить

Файл:Радиальное распределение электронной плотности.png
  • Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :
 E= - \frac{ m e^4}{n^2 {\hbar ^2}}
Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.
  • Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задается соотношением
p = \hbar \sqrt{l(l+1)}
Атомные орбитали принято называть по их буквенному обозначению их орбитального числа:
Значение орбитального квантового числа 0 1 2 3 4
Буквенное обозначение s p d f g
  • Магнитное квантовое число ml определяет проекцию орбитального момента импульса на направление магнитного поля и может принимать целые значения в диапазоне от -l до l, включая 0 (ml = -l … 0 … l):
M_z = \hbar m_l

В литературе орбитали обозначают комбинацией квантовых чисел, при этом главное квантовое число обозначают цифрой, орбитальное квантовое число - соответствующей буквой (см. таблицу ниже) и магнитное квантовое число - выражением в нижеем индексе, показывающем проекцию орбитали на декартовы оси x, y, z, например 2px, 3dxy, 4fz(x2-y2). Для орбиталей внешней электронной оболочки, то есть в случае описания валентных электронов, главное квантовое число в записи орбитали, как правило, опускают.

Геометрическое представлениеПравить

Геометрическое представление атомной орбитали - область пространства, ограниченная поверхностью равной плотности (эквиденситной поверхностью) вероятности или заряда. Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежит в диапазоне значений 0.9-0.99.

Поскольку энергия электрона определяется кулоновским взаимодействием и, следовательно, расстоянием от ядра, то главное квантовое число n задает размер орбитали.

Форма и симметрия орбитали задаются орбитальным квантовыми числами l и m: s-орбитали являются сферически симметричными, p, d и f-орбитали имеют более сложную форму, определяемую угловыми частями волновой функции - угловыми функциями. Угловые функции Ylm (φ , θ) - собственные функции оператора квадрата углового момента L2, зависящие от квантовых чисел l и m, являются комплексными и описывают в сферических координатах (φ , θ) угловую зависимость вероятности нахождения электрона в центральном поле атома. Линейная комбинация этих функций определяет положение орбиталей относительно декартовых осей координат.

Для линейных комбинаций Ylm приняты следующие обозначения:

Значение орбитального квантового числа 0 1 1 1 2 2 2 2 2
Значение магнитного квантового числа 0 0 \pm 1 \pm 1 0 \pm 1 \pm 1 \pm 1 \pm 2
Линейная комбинация - - {{1 \over {i\sqrt 2 }}(Y_{11}  - Y_{1 - 1} )} {{1 \over {\sqrt 2 }}(Y_{11}  + Y_{1 - 1} )} - {{1 \over {\sqrt 2 }}(Y_{21}  + Y_{2 - 1} )} {{1 \over {i\sqrt 2 }}(Y_{21}  - Y_{2 - 1} )} {{1 \over {\sqrt 2 }}(Y_{22}  - Y_{2 - 2} )} {{1 \over {i\sqrt 2 }}(Y_{22}  - Y_{2 - 2} )}
Обозначение \! s \!p_z \!p_y \!p_x \!d_{z^2} \!d_{xz} \!d_{yz} \!d_{x^2  - y^2 } \!d_{xy}

Дополнительным фактором, иногда учитываемым в геометрическом представлении, является знак волновой функции (фаза). Этот фактор существен для орбиталей с орбитальным квантовым числом l, отличным от нуля, то есть не обладающих сферической симметрией: знак волновой функции их "лепестков", лежащих по разлные стороны узловой плоскости, противоположен. Знак волновой функции учитывается в методе молекулярных орбиталей МО ЛКАО (молекулярные орбитали как линейная комбинация атомных орбиталей).

Заполнение орбиталей электронами и электронная конфигурация атомаПравить

На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули. Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l) определяется Правилом Хунда.

Краткую запись распределения электронов в атоме по различным электронным оболочкам атома с учётом их главного и орбитального квантовых чисел n и l называют электронной конфигурацией атома.

См. также Править

СсылкиПравить


Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Атомная орбиталь. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Викия-сеть

Случайная вики