ФЭНДОМ


Волна́ — изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины, например, плотности вещества, напряжённости электрического поля, температуры[1]».

Более правильное определение: Волна — это явление распространения в пространстве с течением времени возмущения физической величины.

Файл:Simple harmonic motion animation.gif

Независимо от природы волны перенос энергии осуществляется без переноса вещества; последнее может возникнуть лишь как побочный эффект. Перенос энергии — принципиальное отличие волн от колебаний, в которых происходит, лишь «местные» преобразования энергии. Волны же, как правило, способны удаляться на значительные расстояния от места своего возникновения. По этой причине волны иногда называют «колебанием, оторвавшимся от излучателя».

Большинство волн по своей природе являются не новыми физическими явлениями, а лишь условным названием для определённого вида коллективного движения. Так, если в объёме газа возникла звуковая волна, то это не значит, что в этом объёме появились какие-то новые физические объекты. Звук — это лишь название для особого скоординированного типа движения тех же самых молекул. То есть большинство волн — это колебания некоторой среды. Вне этой среды волны данного типа не существуют (например, звук в вакууме).

Имеются, однако, волны, которые являются не «рябью» какой-либо иной среды, а представляют собой именно новые физические сущности. Так, электромагнитные волны в современной физике — это не колебание некоторой среды (называвшейся в XIX веке эфиром), а самостоятельное, самоподдерживающееся поле, способное распространяться в вакууме. Аналогично обстоит дело и с волнами вероятности материальных частиц.

Некоторые явления также называют волнами, однако каждая из них обладают собственной спецификой. Так, с определёнными оговорками, говорят про: температурные волны, волны вероятности электрона и других частиц, волны горения, волны химической реакции, волны плотности реагентов, волны плотности транспортных потоков.

Отметим, что явления, выглядящие как волны, но не способные сами распространяться (как, например, песчаные дюны), волнами не являются.

Характеристики волны Править

Временна́я и пространственная периодичности Править

В отличие от стационарного колебания волны имеют две основные характеристики:

  • временну́ю периодичность — скорость изменения фазы с течением времени в какой-то заданной точке, называемую частотой волны f ;
  • пространственную периодичность — скорость изменения фазы в определённый момент времени с изменением координаты — длина волны λ.

Временная и пространственная периодичности взаимосвязаны, что отражено в законе дисперсии, который определяет, как именно волны будут выглядеть и распространяться. В упрощённом виде для линейных волн эта зависимость имеет следующий вид[2]:

f = c/\lambda\,        где c — скорость распространения волны в данной среде.

Интенсивность волны Править

О силе волны судят по её амплитуде. В отличие от колебания амплитуда волны — скалярная величина.

Но для количественной характеристики переносимой волной энергии используется вектор плотности потока энергии I. Его направление совпадает с направлением переноса энергии, а абсолютная величина равна количеству энергии, переносимой волной за единицу времени через единичную площадку, перпендикулярную направлению вектора. При небольших амплитудах:

I = k A^2\,      где A — амплитуда; k — коэффициент пропорциональности, зависящий от природы волны и свойств среды, где эта волна распространяется.

Классификации волн Править

Имеется множество классификаций волн, различающиеся по своей физической природе, по конкретному механизму распространения, по среде распространения и т. п.

В зависимости от физической среды, в которой распространяются волны, их свойства различны и поэтому различают:

По отношению к направлению колебаний частиц среды, в которой распространяется волна, выделяют:
  • продольные волны (волны сжатия, P-волны) — волна распространяется параллельно колебаниям частиц среды (звук);
  • поперечные волны (волны сдвига, S-волны) — частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);
  • волны смешанного типа.

По виду фронта волны (поверхности равных фаз):

  • плоская волна — плоскости фаз перпендикулярны направлению распространения волны;
  • сферическая волна — поверхностью фаз является сфера;
  • цилиндрическая волна — поверхность фаз напоминает цилиндр.
Продольные волны: Поперечные волны:
Файл:Onde compression impulsion 1d 30 petit.gif
Файл:Onde cisaillement impulsion 1d 30 petit.gif
Файл:Ondes compression 2d 20 petit.gif
Файл:Ondes cisaillement 2d 20 petit.gif

По демонстрируемым волнами физическим проявлениям:

  • линейные волны — волны с небольшой амплитудой, свойства которых описываются простыми линейными зависимостями;
  • нелинейные волны — волны с большими амплитудами, что приводит к возникновению совершенно новых эффектов и существенно изменяет характер уже известных явлений;
  • солитоны (уединённые волны);
  • ударные волны или нормальные разрывы.

По постоянству во времени различают:

  • одиночная волна — короткое одиночное возмущение (солитоны);
  • волновой пакет — это ряд возмущений, ограниченных во времени с перерывами между ними. Одно беспрерывное возмущение такого ряда называется цуг волн. В теории волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени;
  • Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью.
  • Если же фазовая скорость волны зависит от её частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счет дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счет сложения волн возникают все новые максимумы, которые передвигаются вперед и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стекла и жидкости.
  • В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причем возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте.

Волновые уравнения Править

Математическое описание волн основывается на представлении о них, как о пространственно распространяющихся колебаниях, и в общем виде записывается:

~\mathbf u = \mathbf u\left(\mathbf r,t\right)

где u — отклонение от некоего среднего положения в точке r во время t.

Более определённый вид уравнения зависит от типа волны.

Гармоническая волна Править

Изменение колеблющейся величины u для гармонически распространяющейся волны в любой точке описывается формулой:

u \left( r,t \right) = A \sin {2 \pi t \over T}    или    u \left( r,t \right) = A \cos {2 \pi t \over T}

где A — амплитуда, t — время, а Tпериод волны.

В любой другой точке, расположенной на расстоянии r от первой в направлении распространения волны, изменение u происходит с опозданием на время t_1:

u \left( r,t \right) = A \sin {2 \pi \over T} \left( t - t_1 \right) = A \sin {2 \pi \over T} \left( t - {r \over c} \right)      где c — скорость распространения волны в данной среде.

Лучи волны Править

Лучом волны называется линия, направление которой совпадает с направлением потока энергии в этой волне в каждой её точке. Например, плоской волне (см. раздел «Классификация волн») соответствует пучок параллельных прямых лучей; сферической волне — радиально расходящийся пучок лучей.

Расчёт формы лучей при небольшой длине волны — по сравнению с препятствиями, поперечными размерами фронта волны, расстояниями до схождения волн и т. п. — позволяет упростить сложный расчёт распространения волны. Это применяется в геометрической акустике и геометрической оптике.

Происхождение волн Править

Волны могут генерироваться различными способами.

  • Генерация локализованным источником колебаний (излучателем, антенной).
  • Спонтанная генерация волн в объёме при возникновении гидродинамических неустойчивостей. Такую природу могут иметь, например, волны на воде при достаточно большой скорости ветра, дующего над водной гладью.
  • Переход волн одного типа в волны другого типа. Например, при распространении электромагнитных волн в кристаллическом твёрдом теле могут генерироваться звуковые волны.

Общие свойства волн Править

Распространение в однородных средах Править

При распространении волн изменения их амплитуды и скорости в пространстве и времени зависят от свойств анизотропности среды, сквозь которую проходят волны.

Чаще волны в некоторой среде затухают, что связано с диссипативными процессами внутри среды. Но в случае некоторых специальным образом подготовленных метастабильных сред амплитуда волны может, наоборот, усиливаться (пример: генерация лазерного излучения).

На практике монохроматические волны встречаются очень редко. Поэтому наряду с фазовой скоростью волны используется и понятие групповой скорости, то есть скорость «центра тяжести» волнового пакета.

Групповая и фазовая скорости совпадают только для линейных волн. Для нелинейных волн групповая скорость может быть как больше, так и меньше фазовой скорости. Однако когда речь идёт о скоростях, близких к скорости света, проявляется заведомое неравноправие между групповой и фазовой скоростями. Фазовая скорость не является ни скоростью движения материального объекта, ни скоростью передачи данных, поэтому она может превышать скорость света, не приводя при этом ни к каким нарушениям теории относительности. Групповая же скорость характеризует скорость движения сгустка энергии, переносимой волновым пакетом, и потому не должна превышать скорость света. Однако при распространении волны в метастабильной среде удаётся в определённых случаях добиться групповой скорости, превышающей скорость света.

Поскольку волна переносит энергию и импульс, то её можно использовать для передачи информации. При этом возникает вопрос о максимально возможной скорости передачи информации с помощью волн данного типа (чаще всего речь идёт об электромагнитных волнах). При этом скорость передачи информации никогда не может превышать скорости света, что было подтверждено экспериментально даже для волн, в которых групповая скорость превышает скорость света.

Пространственные размеры волны Править

Когда говорят о пространственном размере волны, то имеют в виду размер той области пространства, где амплитуду колебания нельзя считать (в рамках рассматриваемой задачи) пренебрежимо малой. Большинство волн могут, теоретически, обладать сколь угодно большим размером, как в направлении движения, так и поперёк него. В реальности же все волны обладают конечными размерами. Продольный размер волны, как правило, определяется длительностью процесса излучения волны. Поперечный же размер определяется рядом параметров: размером излучателя, характером распространения волны (например, плоская, сферически расходящаяся волна и т. д.).

Некоторые виды волн, в частности, солитоны, являются ограниченными волнами по построению.

Поляризация волн Править

Если в поперечной волне нарушается симметрия распределения возмущений (например, напряжённость электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения, то мы имеет дело с поляризованной волной. В продольной волне поляризация возникнуть не может, т. к. распространение возмущения всегда совпадает с направлением распространения волны.

Подробней на эту тему см. статью «Поляризация волн».

Взаимодействие с телами и границами раздела сред Править

Если на пути волны встречается какой-либо дефект среды, тело или граница раздела двух сред, то это приводит к искажению нормального распространения волны. В результат этого часто наблюдаются следующие явления:

Конкретные эффекты, возникающие при этих процессах, зависит от свойств волны и характера препятствия.

Наложение волн Править

Излучения с разной длиной волны, но одинаковые по физической природе, могут взаимодействовать друг с другом, интерферировать. При этом могут возникнуть следующие частные эффекты:

  • стоячие волны;
  • бегущие волны;
  • биения — периодическое уменьшение и увеличение амплитуды суммарного излучения;
  • волновой пакет — образующиеся максимумы амплитуды имеют прерывистое распределение (волновой пакет Гаусса);
  • эффект Доплера — изменение длины и амплитуды волн при движении приёмника или источника излучения.

Конечный результат проявления от встречи волн зависит от их свойств: физической природы, когерентности, поляризации и т. д.

Направления исследований волн Править

Примечания Править

  1. Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. — М.: Гос. издат. ф.— м. лит-ры, 1959, с. 144.
  2. Строго говоря, это равенство справедливо только для гармоничных волн.

Литература Править

  • Крауфорд Ф. Берклеевский курс физики, том 3, Волны.
  • Ландау Л. Д., Лифшиц Е. М. Курс теоретической физики, том 6, Гидродинамика.издание?
  • Уизем, Дж. Линейные и нелинейные волны — М.: Мир, 1977.
  • Физика. Большой энциклопедический словарь/Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1999. — С. 85—88. ISBN 5-85270-306-0 (БРЭ)

См. также Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Волна. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики