Фэндом

Виртуальная лаборатория

Гравитация

204 619статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas - «тяжесть») — дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение. Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики, изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике, описывающей гравитацию, является общая теория относительности, квантовая теория гравитационного взаимодействия пока не построена.

Гравитационное взаимодействие Править

Гравитационное взаимодействие — одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m_1 и m_2, разделёнными расстоянием R, есть

F =   G \cdot {m_1 \cdot m_2\over R^2}.

Здесь Gгравитационная постоянная, равная -6{,}673(10)\cdot 10^{-11} м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля. Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Для сравнения: полный электрический заряд этих тел ноль, так как вещество в целом электрически нейтрально. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. В античные времена Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи Править

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе, эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений, и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — нетривиальная структурa колец Сатурна.

Несмотря на попытки описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля Править

В сильных гравитационных полях, при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности:

Гравитационное излучение Править

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако, имеются косвенные наблюдательные свидетельства в пользу его существования, а именно: потери энергии в двойной системе с пульсаром PSR B1913+16 — пульсаром Халса-Тейлора — хорошо согласуются с моделью, в которой эта энергия уносится гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного l-польного источника пропорциональна (v/c)^{2l + 2}, если мультиполь имеет электрический тип, и (v/c)^{2l + 4} — если мультиполь магнитного типа [1], где v — характерная скорость движения источников в излучающей системе, а c — скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L = \frac{1}{5}\frac{G}{c^5}\left\langle \frac{d^3 Q_{ij}}{dt^3} \frac{d^3 Q^{ij}}{dt^3}\right\rangle

где Q_{ij}тензор квадрупольного момента распределения масс излучающей системы. Константа \frac{G}{c^5} = 2,76 \times 10^{-53} Вт позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)) и до настоящего времени (февраль 2007) предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO (англ.), TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын»[2] республики Татарстан.

Тонкие эффекты гравитации Править

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли, но его полные результаты пока не опубликованы.

Квантовая теория гравитации Править

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена непротиворечивая перенормируемая квантовая теория. Впрочем, при низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2.

Однако при высоких энергиях такое описание перестаёт работать, и сейчас даже неясно, как именно надо формулировать теорию в этом случае. Тем не менее, в настоящее время квантовая гравитация — одна из самых перспективных областей физики.

Современные классические теории гравитации Править

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[3] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой (см. статью Альтернативные теории гравитации). Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности Править

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала) иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем или метрикой четырехмерного пространства-времени, а напряженность гравитационного поля - с аффинной связностью пространства-времени, определяемой метрикой. Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих метрику пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырехмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием ее формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка. Известно, что в ОТО имеются затруднения с объяснением факта неинвариантности энергии гравитационного поля, поскольку данная энергия не описывается тензором. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия. Считается, что существуют определенные проблемы с однозначностью результатов и обоснованием непротиворечивости. Однако экспериментально ОТО считается подтверждающейся до самого последнего времени. Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики, подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое в основном и доступно экспериментальной проверке.

Теория Эйнштейна-Картана Править

Теория Эйнштейна-Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов [1]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана-Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО настолько малы, что пока не видно даже гипотетических путей для их измерения.

Релятивистская теория гравитации Править

Релятивистская теория гравитации (РТГ) разрабатывается академиком Логуновым А. А. с группой сотрудников. [4] В ряде работ они утверждают, что РТГ имеет следующие отличия от ОТО[5] :

  • Гравитация есть не геометрическое поле, а реальное физическое силовое поле, описываемое тензором.
  • Гравитационные явления следует рассматривать в рамках плоского пространства Минковского, в котором однозначно выполняются законы сохранения энергии-импульса и момента количества движения. Тогда движение тел в пространстве Минковского эквивалентно движению этих тел в эффективном римановом пространстве.
  • В тензорных уравнениях для определения метрики следует учитывать массу гравитона, а также использовать калибровочные условия, связанные с метрикой пространства Минковского. Это не позволяет уничтожить гравитационное поле даже локально выбором какой-то подходящей системы отсчёта.

Как и в ОТО, в РТГ под веществом понимаются все формы материи (включая и электромагнитное поле), за исключением самого гравитационного поля. Следствия из теории РТГ таковы: чёрных дыр как физических объектов, предсказываемых в ОТО, не существует; Вселенная плоская, однородная, изотропная, неподвижная и евклидовая.

C другой стороны, существуют не менее убедительные аргументы противников РТГ, сводящиеся к следующим положениям:

  • РТГ есть биметрическая теория, в случае безмассового гравитона эквивалентная так называемой полевой трактовке ОТО как надстройке над ненаблюдаемым пространством Минковского: «В релятивистской теории гравитации… фигурируют в точности те же лагранжианы…, которые приводят к уравнениям гравитационного поля»[6], «математическое содержание РТГ сводится к математическому содержанию ОТО (в полевой формулировке)» [7]. Этот аргумент в таком изложении, правда, по-видимому не учитывает возможных топологических различий между обычной моделью ОТО и такой моделью, или же, по крайней мере, маскирует их.
  • Случай массивного гравитона в РТГ не даёт правильного ньютоновского предела при переходе к массе равной 0, и, следовательно, бессмыслен.[источник?]</sup>
  • Дополнительные уравнения РТГ представляют собой всего лишь координатные условия: «Весь набор уравнений РТГ в терминах метрики искривленного пространства-времени можно свести к уравнениям Эйнштейна плюс гармоническое координатное условие, столь успешно использовавшееся Фоком» [7].
  • Вышеприведённые следствия из РТГ являются лишь следствием неточностей: несуществование чёрных дыр — следствием невозможности покрыть одной координатной картой, эквивалентной пространству-времени Минковского, пространство-время сколлапсировавшего в чёрную дыру объекта; космологических предсказаний — следствием принятых координатных условий в сочетании с совершенно произвольным дополнительным допущением о вложенности световых конусов реального пространства в конусы пространства Минковского. (Как видим, этот аргумент явно противоречит первому, показывая расхождение РТГ и ОТО, которые вполне ощутимы; и, если оставить соображения, очевидно исходящие просто изнутри обычной логики ОТО, или суждения о произвольности постулатов, то решение о верности одного из этих подходов остается за экспериментом, если конечно не будет всё же доказана достаточно неочевидная их полная эквивалентность в области наблюдаемого).

Популярное объяснение Править

Генрих Минковский, один из учителей Эйнштейна, показал, что относительность может быть представлена весьма интересным способом.

Мир, в котором мы живем, существует в четырех измерениях: трех пространственных и одном временном (которое фактически является произведением времени на квадратный корень из -1).

Не так легко это представить себе, но можно предположить, что пространство-время обладает некоторыми необычными свойствами. В частности, путешествуя в пространстве, вы невольно передвигаетесь и во времени. Вы не замечаете этого, но наблюдающий за вами человек скажет, что во времени вы все-таки двигались. Конечно, мы всегда перемещаемся во времени, но, двигаясь в пространстве, вы проходите во времени меньший путь, чем предполагаете. Известный пример этому - парадокс близнецов (см. также рассылку и статью на эту тему, а также подробную хронику).

Все эффекты СТО, такие как сокращение длин и замедление времени, следуют из вышесказанного. Но нужно помнить, что, перемещаясь в пространстве, вы обязаны перемещаться и во времени, но двигась во времени (чем вы сейчас и занимаетесь) вы не обязаны перемещаться в пространстве.

Какое это имеет отношение к гравитации? Все очень просто. Когда какая-нибудь масса присутствует в пространстве-времени, она искажает (или, говоря языком относительности, искривляет) его так, что перемещение во времени уже влечет за собой движение в пространстве. Иными словами, только благодаря своему существованию вы вынуждены двигаться в пространстве. Это явление и есть гравитация!

Основным преимуществом теории гравитации (общей относительности) является то, что она объясняет все видимые свойства данного явления. Например, то, что влияние гравитации одинаково для всех тел является очевидным, когда гравитацию рассматривают как искривление пространства-времени, а не с точки зрения силы.

Теперь вообразите, что вы находитесь в открытом космосе, вдали от любых планет и звёзд, и вдруг вблизи от вас образовалась планета! С вами не случится ничего особенного, вы не почувствуете силу, но в то же время обнаружите, что начали ускоряться по направлению к планете. Это похоже на то, когда перемещаясь в пространстве вы не ощущаете, что движетесь во времени, в отличие от людей, наблюдающих за вами.

Источник

Теория Йордана-Бранса-Дикке Править

В скалярно-тензорных теориях, самой известной из которых является теория Йордана-Бранса-Дикке (или просто Бранса-Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля [2]. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум тензорным уравнениям для метрики. Теория Йордана-Бранса-Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.[8]

Подобное имеет место и в РТГ, где второе тензорное уравнение появляется для учёта связи между неэвклидовым пространством и пространством Минковского[9]. Благодаря наличию безразмерного подгоночного параметра в теории Йордана-Бранса-Дикке, появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов.


 п·о·р 
Теории гравитации
Стандартные Альтернативные ОТО Объединённые теории поля Другие





[S] обозначены теории, сущность или описания которых требуют доработки

Источники и примечания Править

  1. См. аналогии между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм
  2. http://dulkyn.org.ru/ru/about.html
  3. Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  4. Логунов А. А., Мествиришвили М. А. Релятивистская теория гравитации. — М: Наука, 1989.
  5. Логунов А. А., Мествиришвили М. А. Тензор энергии-импульса материи как источник гравитационного поля. — Теоретическая и математическая физика, 1997, Т. 110, Вып. 1, Стр. 5 — 24.
  6. Зельдович Я. Б., Грищук Л. П. ТЯГОТЕНИЕ, ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ И АЛЬТЕРНАТИВНЫЕ ТЕОРИИ. УФН, 1986, Т. 149, № 4, с. 695—707. С. 704.
  7. 7,0 7,1 Зельдович Я. Б., Грищук Л. П. Общая теория относительности верна! УФН, 1988, Т. 155, № 3, с. 517—527. С. 521, 524.
  8. Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  9. С ортодоксальной точки зрения это уравение представляет собой координатное условие, см. выше.

См. также Править

Ссылки Править

Фильм «Мнения и со-мнения» о природе гравитации (43 Мб)

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики