Virtual Laboratory Wiki
Регистрация
Advertisement
Запрос «Градиент» перенаправляется сюда; О способе заливки, см.: Градиент (компьютерная графика).
Файл:Градиент холма.gif

Таким образом операция градиента преобразует холм (слева), если смотреть на него сверху, в поле векторов (справа). Видно, что вектора направлены в горку и тем длиннее, чем круче наклон.

Градиент (от лат. gradiens, род. падеж gradientis — шагающий) — характеристика, показывающая направление наискорейшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой. Например, если взять высоту поверхности Земли над уровнем моря (2-мерное пространство), то её градиент в каждой точке поверхности будет показывать «в горку».

Но это нестрогие физические размышления,а теперь дадим строгое математическое определение:

Для случая трёхмерного пространства, градиентом называется векторная функция с компонентами , , , где  — некоторая скалярная функция координат , , .

Если  — функция переменных , то её градиентом называется -мерный вектор

компоненты которого равны частным производным по всем её аргументам.

Градиент обозначается или, с использованием оператора набла, .

Из определения градиента следует, что:

Смысл градиента любой скалярной функции в том, что его скалярное произведение с бесконечно малым вектором перемещения дает полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена , то есть линейную (в случае общего положения она же главная) часть изменения при смещении на . Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:

Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат , то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку  — это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:

или, опуская по правилу Эйнштейна знак суммы,

(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше). Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.

Пример[]

Например, градиент функции будет представлять собой:

В физике[]

В различных отраслях физики используется понятие градиента различных физических полей.

Например, градиент концентрации — нарастание или уменьшение по какому-либо направлению концентрации растворённого вещества, градиент температуры — увеличение или уменьшение по направлению температуры среды и т. д. Градиент может быть вызван различными причинами, например, механическим препятствием, действием электромагнитных, гравитационных или других полей или различием в растворяющей способности граничащих фаз, например, октанол/вода.

Геометрический смысл[]

Рассмотрим семейство линий уровня функции :

Нетрудно показать, что градиент функции в точке перпенидкулярен её линии уровня, проходящей через эту точку. Модуль градиента показывает максимальную скорость изменения функции в окрестности , то есть частоту линий уровня. Например, линии уровня высоты изображаются на топографических картах, при этом модуль градиента показывает крутизну спуска или подъема в данной точке.

Связь с производной по направлению[]

Используя правило дифференцирования сложной функции, нетрудно показать, что производная функции по направлению равняется скалярному произведению градиента на единичный вектор :

Таким образом, для вычисления производной по любому направлению достаточно знать градиент функции, то есть вектор, компоненты которого являются её частными производными.

Градиент в ортогональных криволинейных координатах[]

где  — коэффициенты Ламе.

Цилиндрические координаты[]

Коэффициенты Ламе:

Отсюда:

Сферические координаты[]

Коэффициенты Ламе:

.

Отсюда:

См. также[]



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Градиент. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement