Викия

Виртуальная лаборатория

Диаграммы Фейнмана

206 550статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться
Квантовая механика
\Delta x\cdot\Delta p \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение ...

Математическая формулировка ...

Диаграммы Фе́йнмана — наглядный и эффективный способ описания взаимодействия в квантовой теории поля (КТП). Метод предложен Ричардом Фейнманом в 1949 для построения амплитуд рассеяния и взаимного превращения элементарных частиц в рамках теории возмущений, когда из полного (эффективного) лагранжиана \mathcal{L} системы полей выделяется невозмущённая часть (свободный лагранжиан) \mathcal{L}_0, квадратичная по полям, а оставшаяся часть (лагранжиан взаимодействия) \mathcal{L}_1 трактуется как возмущение. Наиболее наглядную интерпретацию диаграммы Фейнмана приобретают в методе интегралов по траекториям.

Составными элементами диаграммы Фейнмана являются вершины, внутренние и внешние линии. Каждая из линий подсоединяется к каким-нибудь вершинам: внутренняя к двум, а внешняя к одной. Набор вершин определяется структурой \mathcal{L}_1, а набор внешних и внутренних линий — структурой \mathcal{L}_0. Каждому моному по полям в \mathcal{L}_1 соответствует определённый тип вершин, а каждому виду поля в \mathcal{L}_0 определённый тип линий. Если поле нейтральное (соответствующая частица совпадает со своей античастицей), то линия считается ненаправленной, в противном случае линия направленная и на диаграмме снабжается стрелкой.

Существуют так называемые правила Фейнмана, которые сопоставляют каждому элементу диаграммы Фейнмана определенные математические объекты (величины и операции), так что по диаграмме Фейнмана можно однозначно построить аналитическое выражение, дающее вклад в амплитуду рассеяния квантованных полей. Вместе с тем диаграммы Фейнмана позволяют такому вкладу дать наглядную классическую интерпретацию в виде ряда последовательных локальных превращений частиц. Каждому отдельному превращению соответствует вершина, внутренним линиям — распространение промежуточной частицы от одного акта превращения до другого (пропагатор частицы), внешним линиям — волновые функции начальных и конечных частиц, участвующих в процессе. В качестве примера рассмотрим диаграммы Фейнмана в квантовой электродинамике (КЭД), которая описывает взаимодействие электронов, позитронов и фотонов между собой. В КЭД имеются всего один тип вершин (рис. 1) и два типа линий (рис. 2). Ненаправленная волнистая линия относится к фотону, а направленная прямая — к электрону и позитрону.

В последнем случае распространению основной частицы (электрона) соответствует движение вдоль линии по направлению стрелки, а распространению античастицы (позитрона) — движение против стрелки.

Каждая диаграмма Фейнмана имеет несколько интерпретаций в зависимости от направления движения вдоль линий этой диаграммы. Так, для диаграммы Фейнмана, изображённой на рис. 3, допустимы следующие варианты.

  1. Движение по линиям слева направо — рассеяние фотона на электроне. В вершине 1 начальный электрон поглощает начальный фотон, при этом образуется промежуточный электрон, который распространяется от вершины 1 к вершине 2. Здесь он излучает конечный фотон и превращается в конечный электрон. Результатом процесса является перераспределение 4-импульса (энергии и импульса) между электроном и фотоном.
  2. Движение по линиям справа налево — рассеяние фотона на позитроне.
  3. Движение снизу вверх — аннигиляция электрона и позитрона с превращением их в два фотона.
  4. Движение сверху вниз — рождение электрон-позитронной пары при столкновении двух фотонов.

Согласно правилам Фейнмана, в каждой вершине взаимопревращение частиц происходит с интенсивностью, пропорциональной некоторой константе связи (константе взаимодействия), и с соблюдением закона сохранения 4-импульса. Вместе с тем релятивистское соотношение между энергией и импульсом \Epsilon = \sqrt{ P^2 c^2 + m^2 c^4 } (\Epsilon — энергия, Р — обычный трёхмерный импульс, m — масса) выполняется только для начальных и конечных частиц, описываемых внешними линиями (реальные частицы). Это соотношение нарушается для промежуточных частиц, описываемых внутренними линиями, в связи с чем они называются виртуальными частицами. Для них \Epsilon и Р могут независимо принимать значения от —∞ до +∞.

Поле может быть как однокомпонентным, так и многокомпонентным. В КЭД и фотонное (векторное электромагнитное) поле, и электрон-позитронное (спинорное) поле имеют по четыре компоненты. Каждая линия в диаграммы Фейнмана описывает сразу всю совокупность компонент соответствующего поля. В суперсимметричных моделях линия в диаграммы Фейнмана описывает распространение целого мультиплета элементарных частиц, которые соответствуют разным компонентам одного суперполя.

Тип физического процесса определяется только теми частицами, которые имеются на входе и выходе этого процесса. Поэтому все диаграммы Фейнмана с одним и тем же набором внешних линий вне зависимости от своей внутренней структуры соответствуют одному и тому же физическому процессу. Каждая из таких диаграмм вносит аддитивный вклад в амплитуду процесса. Так, помимо диаграммы, изображённой на рис. 3, эффекту Комптона соответствуют, например, диаграммы, приведённые на рис. 4.

Отличительной чертой этих диаграмм является наличие в них замкнутых циклов (петель), состоящих из внутренних линий. Диаграммы типа рис. 4,а называются однопетлевыми, а типа рис. 4, б и рис. 4, в — двухпетлевыми. Беспетлевые диаграммы типа рис. 3 называются древесными. Из всех диаграмм, соответствующих данному физическому процессу, древесные диаграммы имеют наименьшее число вершин. Поэтому в теории возмущений, в которой роль малого параметра играет константа связи, древесные диаграммы вносят основной вклад, а диаграммы с петлями описывают радиационные поправки.

Помимо разложения всех величин в ряд теории возмущений по константе связи используется разложение в ряд по константе Планка. Оказывается, что вклад диаграммы Фейнмана пропорционален \hbar^n, где n — число петель в данной диаграмме. Поэтому в классическом пределе (h → 0) вклад дают только древесные диаграммы. Кроме амплитуд рассеяния диаграммы Фейнмана используются для описания функций Грина (в КТП). В обоих случаях структуры диаграмм очень схожи, что отражает тесную связь между функциями Грина и амплитудами рассеяния. Существенным отличием является лишь то, что для функций Грина внешним линиям соответствует распространение виртуальных частиц (вне массовой поверхности).

Согласно правилам Фейнмана, каждой петле в диаграмме Фейнмана отвечает интегрирование по 4-импульсу, который может циркулировать в данной петле, не нарушая законов сохранения в вершинах. Некоторые из этих интегралов расходятся за счёт бесконечного объёма интегрирования (ультрафиолетовые расходимости). Существует последовательный метод, называемый процедурой регуляризации и перенормировки, который позволяет избавиться от этих расходимостей. В этом методе формулируются правила, по которым некоторым внутренним блокам (обобщённым вершинам, см. ниже) в диаграмме Фейнмана ставятся в соответствие определенные математический операции. С их помощью удаётся скомпенсировать ультрафиолетовые расходимости.

В выделении обобщённых вершин, используемых в процедуре перенормировок, существенную роль играет следующая классификация диаграмм Фейнмана. Диаграмма называется связной, если из любой её вершины можно попасть в любую другую, перемещаясь по внутренним линиям. В противном случае диаграмма называется несвязной. Диаграмма называется сильно связной или одночастично неприводимой, если она остаётся связной после разрыва любой одной внутр. линии. Различные совокупности вершин и внутренних линий диаграммы называются её поддиаграммами. Они имеют ту же классификацию, что и диаграммы. Обобщённые вершины—это сильно связные поддиаграммы, которые подсоединяются к другим частям диаграммы так же, как обычные вершины или внутр. линии. В КЭД три типа обобщённых вершин: собственная энергия электрона (подсоединяется двумя электрон-позитронными линиями), собственная энергия фотона или поляризация вакуума (подсоединяется двумя фотонными линиями), треугольная вершина (подсоединяется двумя электрон-позитронными линиями и одной фотонной).

Специфические особенности имеет диаграммная техника для моделей с неабелевыми калибровочными полями. Это связано с тем, что для их последовательной релятивистски инвариантной формулировки приходится рассматривать помимо физических компонент калибровочных полей и нефизические. Оказывается, что лишний вклад в наблюдаемые величины от нефизических компонент можно скомпенсировать вкладом некоторых «духовых» полей, имеющих неправильную связь спина со статистикой. Соответственно этому помимо диаграмм, описывающих распространение и взаимодействие материальных и калибровочных полей, приходится рассматривать диаграммы, в которых фигурируют «духовые» поля. Так, в квантовой хромодинамике помимо вершин, описывающих взаимодействие материальных полей (кварков) с калибровочными полями (глюонами) и глюонов между собой (рис. 5, а и рис. 5, б, 5, в), приходится вводить вершины, описывающие взаимодействие глюонов с «духами» (рис. 5, г).

Поскольку для физических процессов ни в начальном, ни в конечном состоянии «духи» присутствовать не могут, то вклад в амплитуду таких процессов дают только диаграммы, в которых нет внешних «духовых» линий. Однако при рассмотрении выражений, не зависящих от поляризации начальных и (или) конечных калибровочных полей, иногда технически более удобно суммировать по всем компонентам этих полей, а не только по физическим. В этом случае вклад нефиз. компонент может быть скомпенсирован вкладом от диаграмм, в которых в начальном и (или) конечном состоянии «духи» присутствуют.

Диаграммы Фейнмана широко используются для анализа аналитических свойств амплитуд рассеяния, в частности для исследования их особенностей (сингулярностей). Иногда это позволяет из всей совокупности диаграмм, отвечающих данному процессу, выделить некоторую подсовокупность, которая вносит основной вклад.

Метод диаграммы Фейнмана успешно применяется также в квантовой теории многих частиц, в частности для описания конденсированных тел и ядерных реакций.

См. также Править

Ссылки Править

Литература Править

Элементарное изложение, которое должно быть понятно неспециалистам Править

Диаграммная техника в квантовой электродинамике Править

Биленький С. М. Введение в диаграммную технику Фейнмана 1971

Диаграммная техника в физике элементарных частиц Править

  • Фейнман Р., Теория фундаментальных процессов, пер. с англ., М., 1978
  • Л. Б. Окунь. Лептоны и кварки.
  • Боголюбов Н. Н., Ширков Д. В., Квантовые поля, 2 изд., М., 1993
  • Ициксон К., Зюбер Ж.-Б., Квантовая теория поля, пер. с англ., т. 1—2, М., 1984.

Диаграммная техника в теории многочастичных систем Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Диаграммы Фейнмана. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Викия-сеть

Случайная вики