Викия

Виртуальная лаборатория

Закон Ома

204 605статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Классическая электродинамика
Solenoid.svg

</div>

Магнитное поле соленоида
Электричество · Магнетизм

Зако́н Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Ток, А Напряжение, В Сопротивление, Ом Мощность, Вт
I U R P

История закона Ома Править

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам:

 I \sim U ,

или

 I = G \ U .

Коэффициент пропорциональности  G \ назвали электропроводностью, а величину  R = 1 / G\ принято именовать электрическим сопротивлением проводника.

Закон Ома был открыт в 1827 году.

Закон Ома в интегральной форме Править

Файл:Ohm's Law with Voltage source.svg
Файл:Ohm's law triangle.PNG

Закон Ома для участка электрической цепи имеет вид:

U = R I

где:

  • U — напряжение или разность потенциалов,
  • I — сила тока,
  • R — сопротивление.

Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

I = {\varepsilon \over {R+r}},

где:

Закон Ома в дифференциальной форме Править

Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

\mathbf{j} = \sigma \mathbf{E}

где:

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока Править

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой \omega, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

\mathbb{U} = \mathbb{I} \cdot Z,

где:

  • U = U0eiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2+Rr2)1/2 — полное сопротивление,
  • Rr = ωL — 1/ωC — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = —arctg Rr/Ra — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U=U_0\sin(\omega t+\phi) подбором такой \mathbb{U}=U_0e^{i(\omega t + \phi)}, что \operatorname{Im} \mathbb{U} = U . Тогда все значения токов и напряжений в схеме надо считать как F=\operatorname{Im} \mathbb{F}

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Объяснение закона Ома Править

Закон Ома можно просто объяснить при помощи теории Друде

\vec j=\frac{n \cdot e_0^{2}\cdot\tau}{m} \cdot\vec E=\sigma\cdot\vec E

См. также Править


Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Закон Ома. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Викия-сеть

Случайная вики