ФЭНДОМ


Из Википедии Править

Золото́е сече́ние (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Rechteck GoldenerSchnitt

Отрезав квадрат от прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон

Отношение частей в этой пропорции выражается квадратичной иррациональностью

\varphi = \frac{ \sqrt{5}+1}{2} \approx 1{,}6180339887\dots

Метод золотого сечения — метод поиска значений действительно-значной функции на заданном отрезке. В основе метода лежит принцип деления в пропорциях золотого сечения. Наиболее широко известен как метод поиска экстремума в решении задач оптимизации.

Математические свойства Править

Pentagram-phi.svg

Золотое сечение в пятиконечной звезде

\varphi^2 = \varphi + 1.
\varphi = 2 \cdot \cos \frac{\pi}5.
  • \varphi представляется в виде бесконечной цепочки квадратных корней:
\varphi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}.
\varphi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1+\dots}}},
подходящими дробями которой служат отношения последовательных чисел Фибоначчи \frac{F_{n+1}}{F_n}. Таким образом,
\varphi = \lim_{n\to\infty} \frac{F_{n+1}}{F_n}.
Zs p02

Построение золотого сечения

  • В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении (на приведённом рисунке отношение красного отрезка к зелёному, так же как зелёного к синему, так же как синего к фиолетовому, равны \varphi).
  • Геометрическое построение. Золотое сечение отрезка AB можно построить следующим образом: в точке B восстанавливают перпендикуляр к AB, откладывают на нём отрезок BC, равный половине AB, на отрезке AC откладывают отрезок AD, равный AC-CB, и наконец, на отрезке AB откладывают отрезок AE, равный AD. Тогда
\varphi=\frac{|AB|}{|AE|}=\frac{|AE|}{|EB|}.

Золотое сечение и гармония в искусстве Править

Под «правилом золотого сечения» в архитектуре и искусстве обычно понимается асимметричные композиции, не обязательно содержащие золотое сечение.

Многие утверждают, что объекты, содержащие в себе «золотое сечение», воспринимаются людьми как наиболее гармоничные. Обычно такие исследования не выдерживают строгой критики[1][2][3]. В любом случае ко всем этим утверждениям следует относиться с осторожностью, поскольку во многих случаях это может оказаться результатом подгонки или совпадения. Есть основание считать, что значимость золотого сечения в искусстве преувеличена и основывается на ошибочных расчётах. Некоторые из таких утверждений:

  • Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.
  • Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. Древнеегипетский зодчий Хесира, вырезанный на деревянной доске, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. и т. п.
  • Результаты исследования золотого сечения в музыке впервые изложены в докладе Эмилия Розенова (1903) и позднее развиты в его статье «Закон золотого сечения в поэзии и музыке» (1925). Розенов показал действие данной пропорции в музыкальных формах эпохи Барокко и классицизма на примере произведений Баха, Моцарта, Бетховена.

При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0 и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино- и телевизионных экранов — например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми».


  1. Радзюкевич А. В. Красивая сказка о «золотом сечении»
  2. Mario Livio, The Golden Ratio: The Story of Phi, The World's Most Astonishing Number
  3. Devlin's Angle, The Myth That Will Not Go Away

См. также Править

La Sagrada Família Править

СаградаФамилья
Geo 07 Гауди А

A single system of proportions, based on the twelfth parts of the largest dimension, orders in series the general measurements of the church (width, length and height of each part), the diameters of the columns and the diameters of the openings of windows and vaults.

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.