Фэндом


Идеальный газматематическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Классический идеальный газ Править

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

  • объём частицы газа равен нулю (то есть диаметр молекулы d пренебрежимо мал по сравнению со средним расстоянием между ними, nd^3 \to 0) [1];
  • импульс передается только при соударениях (то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях);
  • суммарная энергия частиц газа постоянна (то есть нет передачи энергии за счет передачи тепла или излучением)

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия — сумме энергий частиц газа. Свойства идеального газа описываются уравнением Менделеева — Клапейрона

p = nkT,

где p — давление, n — концентрация частиц, k — постоянная Больцмана, T — абсолютная температура.

Равновесное распределение частиц классического идеального газа по состояниям описывается распределением Больцмана:

\bar n_j  = ae^{ - {{\varepsilon _j } \over {kT}}},

где \bar n_j — среднее число частиц, находящихся в j-ом состоянии с энергией \varepsilon _j, а константа a определяется условием нормировки:

\sum{n_j}=N,

где N — полное число частиц.

Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми — Дирака и Бозе — Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем Ферми-газа и Бозе-газа. Для любого идеального газа справедливо соотношение Майера:

C_p-C_v=R,

где R — универсальная газовая постоянная, C_p — молярная теплоемкость при постоянном давлении, C_v — молярная теплоемкость при постоянном объёме.

Квантовый идеальный газ Править

Понижение температуры и увеличение плотности газа может привести к ситуации, когда среднее расстояние между частицами становится соизмеримым с длинной волны де Бройля для этих частиц, что приводит к переходу от классического к квантовому идеальному газу (см. Вырожденный газ). В таком случае поведение газа зависит от спина частиц: в случае полуцелого спина (фермионы) действует статистика Ферми — Дирака (Ферми-газ), в случае целого спина (бозоны) — статистика Бозе — Эйнштейна (Бозе-газ).

Ферми-газ Править

Для фермионов действует принцип Паули, запрещающий двум тождественным фермионам находиться в одном квантовом состоянии. Вследствие этого при абсолютном нуле температуры импульсы частиц и, соответственно, давление и плотность энергии Ферми-газа отличны от нуля и пропорциональны числу частиц в единице объёма. Существует верхний предел энергии, который могут иметь частицы Ферми-газа при абсолютном нуле (Энергия Ферми E_F). Если энергия теплового движения частиц Ферми-газа значительно меньше энергии Ферми, то это состояние называют вырожденным газом.

Особенностью Ферми-газов является крайне слабая зависимость давления от температуры: в нерелятивистском случае давление P \sim K \rho ^{5/3}, в релятивистском — P_{rel} \sim K_{rel}\rho ^{4/3}.

Примерами Ферми-газов являются электронный газ в металлах, сильнолегированных и вырожденных полупроводниках, вырожденный газ электронов в белых карликах и вырожденный газ нейтронов в нейтронных звёздах.

Бозе-газ Править

Так как на бозоны принцип Паули не распостраняется, то при снижении температуры Бозе-газа ниже некоторой температуры T_0 возможен переход бозонов на наинизший энергетический уровень с нулевым импульсом, то есть образоввание конденсата Бозе — Эйнштейна. Поскольку давление газа равно сумме импульсов частиц, переданной стенке в единицу времени, при T < T_0 давление Бозе-газа зависит только от температуры.

Примерами Бозе-газов являются различного рода газы квазичастиц (слабых возбуждений) в твёрдых телах и жидкостях, сверхтекучая компонента гелия II, конденсата Бозе — Эйнштейна куперовских электронных пар при сверхпроводимости. Примером ультрарелятивистского Бозе-газа является фотонный газ.



Примечания Править

  1. Коган М. Н. Динамика разреженного газа (кинетическая теория. М., 1967)



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Идеальный газ. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики