ФЭНДОМ


Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций. Все функции, определённые на конечном отрезке числовой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла равны. Однако, существует большой класс функций, определённых на отрезке и интегрируемых по Лебегу, но неинтегрируемых по Риману. Также интеграл Лебега может иметь смысл для функций, заданных на произвольных множествах.

Идея построения интеграла Лебега состоит в том, что вместо разбиения области определения подынтегральной функции на части и составления потом интегральной суммы из значений функции на этих частях, на интервалы разбивают её область значений, а затем суммируют с соответствующими весами меры прообразов этих интервалов.

Определение Править

Интеграл Лебега определяют индуктивно, переходя от более простых функций к сложным. Будем считать, что дано пространство с мерой (X,\mathcal{F},\mu), и на нем определена измеримая функция f:(X,\mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).

Определение 1. Пусть \,f — индикатор некоторого измеримого множества, то есть f(x) = \mathbf{1}_A(x), где A \in \mathcal{F}. Тогда интеграл Лебега функции \,f по определению:

 \int\limits_X f(x)\, \mu(dx) \equiv \int\limits_X f\, d\mu = \mu( A ).

Определение 2. Пусть \,f — простая функция, то есть f(x) = \sum\limits_{i=1}^n f_i\, \mathbf{1}_{F_i}(x), где \{f_i\}_{i=1}^n \subset \mathbb{R}, а \{F_i\}_{i=1}^n \subset \mathcal{F} — конечное разбиение \,X на измеримые множества. Тогда

\int\limits_X f(x)\, \mu(dx) = \sum\limits_{i=1}^n f_i\, \mu(F_i).

Определение 3. Пусть теперь \,f — неотрицательная функция, то есть f(x) \geq 0\; \forall x\in X. Рассмотрим все простые функции \,\{f_s\}, такие что f_s(x) \leq f(x)\; \forall x\in X. Обозначим это семейство \mathcal{P}_f. Для каждой функции из этого семейства уже определён интеграл Лебега. Тогда интеграл от f задаётся формулой:

\int\limits_X f(x)\,\mu(dx) = \sup\left\{\int\limits_X f_s(x)\,\mu(dx)\; \vert\; f_s \in \mathcal{P}_f \right\}

Наконец, если функция f произвольного знака, то её можно представить в виде разности двух неотрицательных функций. Действительно, легко видеть, что:

\,f(x) = f^+(x) - f^-(x),

где

f^+(x) = \max(f(x),0),\; f^-(x) = - \min( 0, f(x)).

Определение 4. Пусть \,f — произвольная измеримая функция. Тогда ее интеграл задаётся формулой:

\int\limits_X f(x)\, \mu(dx) = \int\limits_X f^+(x)\, \mu(dx) - \int\limits_X f^-(x)\, \mu(dx).

Определение 5. Пусть наконец A \in \mathcal{F} произвольное измеримое множество. Тогда по определению

\int\limits_A f(x)\, \mu(dx) = \int\limits_X f(x)\, \mathbf{1}_A(x)\, \mu(dx),

где \mathbf{1}_A(x) — индикатор-функция множества A.

Пример Править

Рассмотрим функцию Дирихле f(x) \equiv \mathbf{1}_{\mathbb{Q}_{[0,1]}}(x), заданную на ([0,1],\mathcal{B}([0,1]),m), где \mathcal{B}([0,1])борелевская σ-алгебра на \,[0,1], а \,mмера Лебега. Эта функция принимает значение \,1 в рациональных точках и \,0 в иррациональных. Легко увидеть, что \,f не интегрируема в смысле Римана. Однако, она является простой функцией на пространстве с конечной мерой, ибо принимает только два значения, а потому её интеграл Лебега определён и равняется:

\int\limits_{[0,1]}f(x)\, m(dx) = 1 \cdot m(\mathbb{Q}_{[0,1]}) + 0 \cdot m( [0,1] \setminus \mathbb{Q}_{[0,1]} ) = 1 \cdot 0 + 0 \cdot 1 = 0.

Действительно, мера отрезка [0,1] равна 1, и так как множество рациональных чисел счётно, то его мера равна 0, а значит мера иррациональных чисел равна 1-0=1.

Замечания Править

  • Так как \,|f(x)| = f^+(x) + f^-(x), измеримая функция \,f(x) интегрируема по Лебегу тогда и только тогда, когда функция \,|f(x)| интегрируема по Лебегу. Это свойство не выполняется в отношении интеграла Римана;
  • В зависимости от выбора пространства, меры и функции, интеграл может быть конечным или бесконечным. Если интеграл функции конечен, то функция называется интегрируемой по Лебегу или суммируемой;
  • Если функция определена на вероятностном пространстве (\Omega, \mathcal{F}, \mathbb{P}) и измерима, то она называется случайной величиной, а ее интеграл называют математическим ожиданием или средним. Случайная величина интегрируема, если она имеет конечное математическое ожидание.

Простейшие свойства интеграла Лебега Править

  • Интеграл Лебега линеен, то есть
\int\limits_X[af(x)+bg(x)]\, \mu(dx) = a \int\limits_X f(x)\, \mu(dx) + b\int\limits_X g(x)\, \mu(dx) ,

где a,b\in \mathbb{R} — произвольные константы;

  • Интеграл Лебега сохраняет неравенства, то есть если 0 \leq f(x) \leq g(x) п.в., и \,g(x) интегрируема, то интегрируема и \,f(x), и более того
0 \leq \int\limits_X f(x)\, \mu(dx) \leq \int\limits_X g(x)\, \mu(dx);
  • Интеграл Лебега не зависит от поведения функции на множестве меры нуль, то есть если \,f(x) = g(x) п.в., то
\int\limits_X f(x)\, \mu(dx) = \int\limits_X g(x)\, \mu(dx).

Сходимость интегралов Лебега от последовательностей функций Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Интеграл Лебега. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики