Фэндом


В физике элементарных частиц калибровочные бозоны — это бозоны, которые действуют как переносчики фундаментальных взаимодействий природы. Точнее, элементарные частицы, взаимодействия которых описываются калибровочной теорией, оказывают действие друг на друга при помощи обмена калибровочными бозонами, обычно как виртуальными частицами.

Калибровочные бозоны в рамках Стандартной модели Править

В Стандартной модели существует три типа калибровочных бозонов: фотоны, W и Z бозоны и глюоны. Каждый тип соответствует одному из трех описываемых в рамках Стандартной модели взаимодействий: фотоны — калибровочные бозоны электромагнитного взаимодействия, W и Z бозоны переносят слабое взаимодействие, а глюоны переносят сильное взаимодействие. Из-за конфайнмента изолированные глюоны не появляются при низких энергиях. Впрочем, при низких энергиях возможно наблюдение массивных глюболов(glueballs), существование которых на 2006 год экспериментально не подтверждено.

Количество калибровочных бозонов Править

В квантовой калибровочной теории калибровочные бозоны являются квантами калибровочных полей. Следовательно, калибровочных бозонов существует столько же, сколько источников калибровочных полей. В квантовой электродинамике калибровочная группа — U(1); в этом простейшем случае всего один калибровочный бозон. В квантовой хромодинамике более сложная группа SU(3) имеет 8 генераторов, что соответствует 8 глюонам. Два W-бозона и один Z-бозон соответствуют, грубо говоря, трем генераторам SU(2) в теории электрослабого взаимодействия.

Массивные калибровочные бозоны Править

По техническим причинам, включающим калибровочную инвариантность, калибровочные бозоны математически описываются уравнениями поля для безмассовых частиц. Следовательно, на наивном теоретическом уровне восприятия все калибровочные бозоны должны быть безмассовыми, а взаимодействия, которые они описывают, должны быть дальнодействующими. Конфликт между этой идеей и экспериментальным фактом, что слабое взаимодействие имеет очень малый радиус действия, требует дальнейшего теоретического исследования.

По Стандартной модели W и Z бозоны получают массу через механизм Хиггса. В механизме Хиггса четыре калибровочных бозона (SU(2) Х U(1) симметрии) электрослабого взаимодействия соединяются в поле Хиггса. Это поле подвержено спонтанному нарушению симметрии из-за формы его потенциала взаимодействия. В результате через Вселенную проходит ненулевой конденсат поля Хиггса. Этот конденсат соединяется с тремя калибровочными бозонами электрослабого взаимодействия (W± и Z), сообщая им массу; оставшийся калибровочный бозон остается безмассовым (фотон). Эта теория также предсказывает существование скалярного бозона Хиггса, который до сих пор обнаружен не был.

За рамками Стандартной модели Править

Теории великого объединения Править

В теориях великого объединения (ТВО) появляются дополнительные калибровочные X и Y бозоны. Они управляют взаимодействиями между кварками и лептонами, нарушая закон сохранения барионного числа и вызывая распад протона. Эти бозоны имеют огромную по квантовым меркам массу (возможно, даже большую, чем W и Z бозоны) из-за нарушения симметрии. До сих пор не получено ни одного экспериментального подтверждения существования этих бозонов (например, в серии наблюдений за распадами протонов на японской установке Супер-Камиоканде).

Гравитоны Править

Четвертое фундаментальное взаимодействие, гравитация, также может переноситься бозоном, который был назван гравитоном. При отсутствии экспериментальной очевидности и математически последовательной теории квантовой гравитации неизвестно, является ли гравитон калибровочным бозоном или нет. Роль калибровочной инвариантности в ОТО играет похожая симметрия — инвариантность диффеоморфизма.

См. также Править

Фундаментальные частицы - легкие элементарные частицы

Править
Кварки: u-кварк · d-кварк · s-кварк · c-кварк · b-кварк · t-кварк
Лептоны: Электрон · Мюон · Тау-лептон · Электронное нейтрино · Мюонное нейтрино · Тау-нейтрино
Античастицы
Антикварки: u-антикварк · d-антикварк · s-антикварк · c-антикварк · b-антикварк · t-антикварк
Антилептоны: Позитрон · Антимюон · Анти тау-лептон · Электронное антинейтрино · Мюонное антинейтрино · Анти тау-нейтрино
Калибровочные бозоны: Фотоны · W и Z бозоны · Глюоны
До сих пор не обнаружены: Бозон Хиггса · Гравитон · Другие гипотетические частицы



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Калибровочный бозон. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики