ФЭНДОМ


Файл:Qregister.jpg

Квантовый компьютер — вычислительное устройство, существенно использующее при работе квантовомеханические эффекты, такие как квантовая запутанность и квантовый параллелизм путём выполнения квантовых алгоритмов. Это позволяет преодолеть некоторые ограничения классических компьютеров. Квантовые компьютеры работают на основе квантовой логики.

Теория Править

Кубиты Править

Идея квантовых вычислений, впервые высказанная Ю. И. Маниным и Р. Фейнманом состоит в том, что квантовая система из L двухуровневых квантовых элементов (кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, 2L-мерное гильбертово пространство состояний. Операция в квантовых вычислениях соответствует повороту в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит может выполнять параллельно 2L операций.

Предположим, что имеется один кубит. В таком случае после измерения, в так называемой классической форме, результат будет 0 или 1. В действительности кубит — квантовый объект и поэтому, вследствие принципа неопределенности, может быть и 0, и 1 с определенной вероятностью. Если кубит равен 0 (или 1) со стопроцентной вероятностью, его состояние обозначается с помощью символа |0> (или |1>) — в обозначениях Дирака. |0> и |1> — это базовые состояния. В общем случае квантовое состояние кубита находится между базовыми и записывается, в виде a\,|0\rangle+b\,|1\rangle, где |a|² и |b|² — вероятности измерить 0 или 1 соответственно; a,b \in \mathbb{C}. Более того, сразу после измерения кубит переходит в базовое квантовое состояние, аналогичное классическому результату.

Пример:

Имеется кубит в квантовом состоянии \frac45\,|0\rangle-\frac35\,|1\rangle
В этом случае, вероятность получить при измерении
0 составляет (4/5)²=16/25 = 64 %,
1 (-3/5)²=9/25 = 36 %.
В данном случае, при измерении мы получили 0 с 64 % вероятностью.
Тогда кубит перескакивает в новое квантовое состояние 1*|0>+0*|1>=|0>, то есть, при следующем измерении этого кубита мы получим 0 со стопроцентной вероятностью.

Перейдём к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: |00>, |01>, |10> и |11>. И наконец, общее квантовое состояние системы имеет вид a\,|00\rangle + b\,|01\rangle + c\,|10\rangle + d\,|11\rangle. Теперь |a|² — вероятность измерить 00 и т. д. Отметим, что |a|²+|b|²+|c|²+|d|²=1 как полная вероятность.

В общем случае, системы из L кубитов у неё 2L классических состояний (00000…(L-нулей), …00001(L-цифр), … , 11111…(L-единиц)), каждое из которых может быть измерено с вероятностями 0—100 %.

Таким образом, одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений.

Вычисление Править

Упрощённая схема вычисления на квантовом компьютере выглядит так: берётся система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством базовых квантовых операций. В конце измеряется значение, и это результат работы компьютера.

Оказывается, что для построения любого вычисления достаточно двух базовых операций. Квантовая система даёт результат, только с некоторой вероятностью являющийся правильным. Но за счёт небольшого увеличения операций в алгоритме можно сколь угодно приблизить вероятность получения правильного результата к единице.

С помощью базовых квантовых операций можно симулировать работу обычных логических элементов, из которых сделаны обычные компьютеры. Поэтому любую задачу, которая решена сейчас, квантовый компьютер решит, и почти за такое же время. Следовательно, новая схема вычислений будет не слабее нынешней.

Чем же квантовый компьютер лучше классического? Большая часть современных ЭВМ работают по такой же схеме: n бит памяти хранят состояние и каждый такт времени изменяются процессором. В квантовом случае система из n кубитов находится в состоянии, являющимся суперпозицией всех базовых состояний, поэтому изменение системы касается всех 2n базовых состояний одновременно. Теоретически новая схема может работать намного (в экспоненциальное число раз) быстрее классической. Практически (квантовый) алгоритм Гровера поиска в базе данных показывает квадратичный прирост мощности против классических алгоритмов. Пока в природе их не существует.

Алгоритмы Править

  • Алгоритм Гровера позволяет найти решение уравнения f(x)=1,\; 0\le x < N за время O(\sqrt{N/M}).
  • Алгоритм Шора позволяет разложить натуральное число n на простые множители за полиномиальное от log(n) время.
  • Алгоритм Дойча — Джоза позволяет «за одно вычисление» определить, является ли функция двоичной переменной f(n) постоянной (f1(n) = 0, f2(n) = 1 независимо от n) или «сбалансированной» (f3(0) = 0, f3(1) = 1; f4(0) = 1, f4(1) = 0).

Было показано, что не для всякого алгоритма возможно «квантовое ускорение».

Квантовая телепортация Править

Алгоритм телепортации реализует точный перенос состояния одного кубита (или системы) на другой. В простейшей схеме используются 4 кубита: источник, приемник и два вспомогательных. Отметим, что в результате работы алгоритма первоначальное состояние источника разрушится — это пример действия общего принципа невозможности клонирования — невозможно создать точную копию квантового состояния, не разрушив оригинал. На самом деле, довольно легко создать одинаковые состояния на кубитах. К примеру, измерив 3 кубита, мы переведём каждый из них в базовые состояния (0 или 1) и хотя бы на двух из них они совпадут. Не получится скопировать произвольное состояние, и телепортация — замена этой операции.

Телепортация позволяет передавать квантовое состояние системы с помощью обычных классических каналов связи. Таким образом, можно, в частности, получить связанное состояние системы, состоящей из подсистем, удалённых на большое расстояние.

Применение квантовых компьютеров Править

Специфика применения Править

Может показаться, что квантовый компьютер — это разновидность аналоговой вычислительной машины. Но это не так: по своей сути это цифровое устройство, но с аналоговой природой.

Основные проблемы, связанные с созданием и применением квантовых компьютеров:

  • необходимо обеспечить высокую точность измерений;
  • внешние воздействия могут разрушить квантовую систему или внести в неё искажения.

Приложения к криптографии Править

Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло больше бы времени, чем возраст Вселенной, в сотни раз. При помощи алгоритма Шора эта задача делается вполне осуществимой, если квантовый компьютер будет построен.

Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений[1]. Прототипы систем подобного рода находятся на стадии разработки[2].

Реализации Править

Физические модели, с помощью которых пытаются построить квантовый компьютер:

Канадская компания D-Wave заявила в феврале 2007 года о создании образца квантового компьютера, состоящего из 16 кубит (устройство получило название Orion). Однако информация об этом устройстве не отвечала строгим требованиям точного научного сообщения; новость не получила широкого признания. Более того дальнейшие планы компании (создать уже в ближайшем будущем 1024-кубитный компьютер) вызвали скепсис у членов экспертного сообщества[3].

В ноябре 2007 года компания D-Wave продемонстрировала работу образца 28-кубитного компьютера онлайн на конференции посвященной суперкомпьютерам[4]. Есть мнение, что обнародование заведомо неправдоподобной информации о создании КК была намеренаой провокацией, призванной дискредитировать идею КК. Дело в том, что распространение персональных КК сделает невозможными финансовые махинации[источник?]</sup>, так как любое действие пользователя становится тут же известным на всех связанных КК. (а вот воровство невозможно -- по той же причине[источник?]</sup>) Таким образом, крупные финансовые организации, для которых обнародование их действий невыгодно, всячески сдерживают создание квантовых компьютеров, в том числе и посредством масс-медиа[источник?]</sup>.

В одном из университетов Австралии уже построили троичный квантовый процессор, который содержит около 50 троичных квантовых ячеек (квантовых троичных триггеров). Один разряд в этом троичном квантовом процессоре называется q-трит (кутрит).

Примечания Править

Литература Править

  • Elizalde, E. Quantum Deletition Is Possible Via Partial Randomization Procedure // Vestnik Of The Tomsk State Pedagogical University. — 2004. — № 7 (44). — Special Issue. — Vol.: Natural And Exact Science. — P. 11—14.
  • Куликов, С. Б. Логико-философские основания операционализации квантовых вычислений // XI Всерос. конф. студентов, аспирантов и молодых ученых «Наука и образование» (16-20 апреля 2007 г.): Мат-лы конф.: в 6 т. Т. 3. Ч.2. — Томск, 2007. — С. 67—72.

Ссылки Править

См. также Править


Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Квантовый компьютер. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики