Virtual Laboratory Wiki
Advertisement

Ковариа́нтным ве́ктором (cиноним: кове́ктор) в дифференциальной геометрии и смежных с ней физических концепциях называется вектор кокасательного пространства, то есть 1-форма. Естественным базисом для разложения ковекторов служит дуальный базис.

Говоря проще, ковариантный вектор — это такой объект, который действует на обычный контравариантный вектор и в результате даёт число — скалярное произведение этих векторов с обычными свойствами линейности. Размерность ковекторов совпадает с размерностью их контравариантных аналогов.

  • Это определение согласовано с определением ковариантного тензора валентности 1 (см. Тензор), каковым и является ковариантный вектор (ковектор) в качестве частного случая тензора.

Нередко ковариантным вектором, особенно в физической литературе, называют разложение любого вектора (то есть вектора ко- или самого́ касательного пространства) по дуальному базису. Тогда речь идет о наборе ковариантных координат любого объекта — 1-формы или обычного вектора, обычно, однако, каждый тип объектов стараются записывать в естественном для него базисе, что соответствует основному определению.

Ковариантные координаты любого объекта принято записывать с нижним индексом, а также — в матричных обозначениях — в виде вектора-строки (в отличие от записи с верхним индексом и вектора-столбца для контравариантных координат, естественных для представления контравариантного вектора).

  • Возможно, было бы лучше строго придерживаться различия в понимании терминов «ковектор» и «ковариантный вектор», понимая под первым объект (вектор ко-касательного пространства — 1-форму), а под вторым — представление с нижним индексом любого объекта, однако с одной стороны — изоморфизм между ко- и просто касательным пространствами в случае (псевдо-)римановых многообразий всё равно размывает формальную границу в этом самом распространённом случае, а с другой стороны — традиция применения термина к тензорам достаточно устойчива. Кроме того, подъём-опускание индекса возможны всё-таки не во всех случаях, а при этом свойства представления будут жёстко закреплены за самим объектом.

Простое определение ковариантного вектора из учебника Ландау:

«Ковариантным вектором назы­вается всякая совокупность [равного размерности пространства количества] величин, которые при преобразовании координат преобразуются как производные от скаляра».

Как видим, формально это определение описывает ковариантное представление, но содержательно описывает в качестве образца ковариантного вектора ковектор — 1-форму — градиент скаляра — для которой (как и для остальных 1-форм) именно это представление естественно.

  • Замечание: очень редко встречается противоположное применение терминов, когда термины ковариантный вектор и контравариантный вектор меняются местами по сравнению с приведенными здесь определениями. Это мотивировано, видимо, тем, что базисные векторы касательного пространства имеют нижний (то есть «ковариантный») индекс, а ко-касательного — верхний (то есть «контравариантный») индекс.

Ко- и контравариантные векторы в метрических пространствах[]

Далее подразумевается, что на пространстве, в котором существуют описанные объекты (или на многообразии, в касательном пространстве которого они существуют) задана невырожденная метрика.

Соответствие между векторами и ковекторами[]

Если определён невырожденный метрический тензор, то формально «ковариантный вектор» и «контравариантный вектор» можно считать просто разными представлениями (записями в виде набора чисел) одного и того же геометрического объекта — обычного вектора или 1-формы. То есть один и тот же вектор может быть записан как ковариантный (то есть через набор ковариантных координат) и контравариантный (то есть через набор контравариантных координат). То же можно сказать об 1-форме. Преобразование одного представления в другое осуществляется просто свёрткой с метрикой:

(здесь и ниже подразумевается суммирование по повторяющемуся индексу, по правилу Эйнштейна).

Различие между векторами и ковекторами[]

Содержательно векторы и 1-формы различают по тому, какое из представлений для них естественно. Так, для 1-форм, например, для градиента — естественно разложение по дуальному базису, так как их естественная свертка (скалярное произведение) с обычным вектором (например, смещением) осуществляется без участия метрики, просто суммированием перемноженных компонент. Для обычных же векторов (к которым принадлежит и само смещение по пространственным координатам ) — естественно разложение по главному базису, так как они свёртываются с другими обычными векторами, такими, как вектор смещения по пространственным координатам, с участием метрики. Например, скаляр  получается (как полный дифференциал) свёртыванием без участия метрики ковариантного вектора , являющегося естественным представлением 1-формы градиента, подействовавшей на скалярное поле, с контравариантным вектором , являющимся естественным представлением обычного вектора смещения по координатам; при этом сам с собой свёртывается с помощью метрики: , что находится в полном согласии с тем, что он контравариантный.

Если речь идет об обычном физическом пространстве, простым признаком ковариантности — контравариантрности вектора является то, как свёртывается его естественное представление с набором координат пространственного перемещения , являющегося образцом контравариантного вектора. Те, что свертываются с посредством простого суммирования, без участия метрики, — это ковариантные векторы (1-формы), в противном случае (свёртка требует участия метрики) — это контравариантные векторы. Если же пространство и координаты полностью абстрактны и нет способа различить главный и дуальный базис, кроме как произвольным условным выбором, то содержательное различие между ковариантными и контравариантными векторами пропадает или становится также чисто условным.

Вопрос о том, является ли именно то представление, в каком мы видим объект, естественным для него, затронут уже чуть выше. Естественным для обычного вектора является контравариантное представление, для 1-формы же — ковариантное.

См. также[]

Изоморфизм между касательным и кокасательным пространством

Литература[]

  • Ландау Л. Д., Лившиц Е. Теория поля. — М. стр. 311.издание?



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Ковариантный вектор. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement