Фэндом


Лоренц-ковариантность — свойство физических законов записываться одинаково во всех инерциальных системах отсчета (с учётом преобразований Лоренца). Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась Лоренц-ковариантность.

Терминология Править

Лоренц-ковариантность физических законов Править

Лоренц-ковариантность физических законов — конкретизация принципа относительности (т.е. постулируемого требования независимости результатов физических экспериментов и записи уравнений от выбора конкретной инерциальной системы отсчёта). Исторически эта концепция стала ведущей при включении в сферу действия принципа относительности (раньше формулировавшегося с применением не преобразования Лоренца, а преобразования Галилея) максвелловской электродинамики, уже тогда лоренц-ковариантную и не имевшую видимых возможностей переделки для ковариантности относительно преобразований Галилея, что привело к распространению требования лоренц-ковариантности и на механику и вследствие этого к изменению последней.

Лоренц-инвариантные величины Править

Лоренц-инвариантностью называют свойство какой-нибудь величины сохраняться при преобразованиях Лоренца (обычно имеется в виду скалярная величина, однако встречается и применение этого термина к 4-векторам или тензорам, имея в виду не их конкретное представление, а "сами геометрические объекты").

Согласно теории представлений группы Лоренца, лоренц-ковариантные величины, помимо скаляров, строятся из 4-векторов, спиноров и их тензорных произведений (тензорные поля).

«инвариантность» vs «ковариантность» Править

В последнее время наметилось вытеснение термина лоренц-ковариантность термином лоренц-инвариантность, который всё чаще применяется равно и к законам (уравнениям) и к величинам. Трудно сказать, является ли это уже нормой языка, или всё же скорее некоторой вольностью употребления. Однако в более старой литературе имелась тенденция строгого разграничения этих терминов: первый (ковариантность) употреблялся по отношению к уравнениям и многокомпонентным величинам (представлениям тензоров, в том числе векторов, и самим тензорам, т.к. часто не проводилось терминологической грани между тензором и набором его компонент), подразумевая согласованное изменение компонент всех входящих в равенства величин или просто согласованное друг с другом изменение компонент разных тензоров (векторов); второй же (инвариантность) применялся, как более частный, к скалярам (также к скалярным выражениям), подразумевая простую неизменность величины.

Примеры Править

Скаляры Править

Синонимом слов лоренц-инвариантная величина в 4-мерном пространственно-временном формализме является термин скаляр, который для полной конкретизации подразумеваемого контекста иногда называют лоренц-инвариантным скаляром.

Интервал:

\Delta s^2=x^a x^b \eta_{ab}=c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2\

Собственное время:

\Delta \tau = \sqrt{\frac{\Delta s^2}{c^2}},\, \Delta s^2 > 0

Инвариантная масса:

m_0^2 c^2 = p^a p^b \eta_{ab}= \frac{E^2}{c^2} - p_x^2 - p_y^2 - p_z^2

Электромагнитные инварианты (из теории Максвелла):

F_{ab} F^{ab} = \ 2 \left( B^2 - \frac{E^2}{c^2} \right)
G_{cd}F^{cd}=\epsilon_{abcd}F^{ab} F^{cd} = \frac{2}{c} \left( \vec B \cdot \vec E \right)

Волновой оператор (оператор Д'аламбера):

\Box = \eta^{\mu\nu}\partial_\mu \partial_\nu  = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}

4-векторы Править

x^a = [ct, x, y, z]\
\partial_a = \left[ \frac{1}{c}\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right]
U^a = \frac{dx^a}{d\tau} = \gamma \left[c, \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right]
p^a = m_0 U^a = \left[\frac{E}{c}, p_x, p_y, p_z\right]
j
^a = [c\rho, j_x, j_y, j_z]\

Тензоры Править

\delta^a_b = \begin{cases} 1 & \mbox{if } a = b, \\ 0 & \mbox{if } a \ne b. \end{cases}
\eta_{ab} = \eta^{ab} = \begin{cases} 1 & \mbox{if } a = b = 0, \\ -1 & \mbox{if }a = b = 1, 2, 3, \\ 0 & \mbox{if } a \ne b. \end{cases}
\epsilon_{abcd} = -\epsilon^{abcd} = \begin{cases} +1 & \mbox{if } \{abcd\} \mbox{ is an even permutation of } \{0123\}, \\ -1 & \mbox{if } \{abcd\} \mbox{ is an odd permutation of } \{0123\}, \\ 0 & \mbox{otherwise.} \end{cases}
F_{ab} = \begin{bmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & -B_z & B_y \\ -E_y/c & B_z & 0 & -B_x \\ -E_z/c & -B_y & B_x & 0 \end{bmatrix}
G_{cd} = \frac{1}{2}\epsilon_{abcd}F^{ab} = \begin{bmatrix} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{bmatrix}


См. также Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Лоренц-ковариантность. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики