Virtual Laboratory Wiki
Регистрация
Advertisement

Не́рвная систе́ма — целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с гуморальной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система, связывая в одно целое чувствительность, двигательную активность и работу других регуляторных систем (эндокринной и иммунной).

Файл:Reizweiterleitung.jpg

Декарт: Eine Reizung am Fuß wird über die Nerven ins Gehirn geleitet, interagiert dort mit dem Geist und erzeugt so ein Schmerzerleben.= Раздражение ступни передаётся по нервам в мозг, взаимодействует там с духом и таким образом порождает ощущение боли.

Общая характеристика нервной системы[]

Нейроны[]

Нервная система состоит из нейронов, или нервных клеток и нейроглии, или нейроглиальных клеток. Нейроны - это основные структурные и функциональные элементы как в центральной, так и периферической нервной системе. Нейроны - это возбудимые клетки, то есть они способны генерировать и передавать электрические импульсы (потенциалы действия). Нейроны имеют различную форму и размеры, формируют отростки двух типов: аксоны и дендриты. У нейрона обычно несколько коротких разветвлённых дендритов, по которым импульсы следуют к телу нейрона, и один длинный аксон, по которому импульсы идут от тела нейрона к другим клеткам (нейронам, мышечным либо железистым клеткам). Передача возбуждения с одного нейрона на другие клетки происходит посредством специализированных контактов - синапсов.

Нейроглия[]

Нейроглиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объема ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции.

Нейронауки и методы исследования нервной системы[]

Основные направления исследований нервной системы[]

Современная наука о нервной системе объединяет многие научные дисциплины: наряду с классическими нейроанатомией, неврологией и нейрофизиологией, важный вклад в изучение нервной системы вносят молекулярная биология и генетика, химия, кибернетика и ряд других наук. Такой междисциплинарный подход к изучению нервной системы нашел отражение в термине – нейронаука (neuroscience). В русскоязычной научной литературе в качестве синонима часто используется термин «нейробиология». Одной из основных целей нейронауки является понимание процессов, происходящих как на уровне отдельных нейронов, так и нейронных сетей, итогом которых являются различные психические процессы: мышление, эмоции, сознание. В соответствие с этой задачей изучение нервной системы ведется на разных уровнях организация, начиная с молекулярного и заканчивая изучением сознания, творческих способностей и социального поведения.

Методы изучения нервной системы[]

Нервная система человека[]

Строение нервной системы человека[]

Морфологическая классификация[]

Нервная система у высокоорганизованых животных и человека по морфологическим признакам подразделяется на:

  • центральную нервную систему


Головной мозг Передний мозг Конечный мозг

Обонятельный мозг, Базальные ганглии, Кора больших полушарий, Боковые желудочки

Промежуточный мозг

Эпиталамус, Таламус, Гипоталамус, Третий желудочек

Ствол мозга Средний мозг

Четверохолмие, Ножки мозга, Сильвиев водопровод

Ромбовидный мозг Задний мозг

Варолиев мост, Мозжечок

Продолговатый мозг
Спинной мозг
  • периферическую нервную систему

К периферической нервной системе относят черепномозговые нервы, спинномозговые нервы и нервные спелетения

Функциональная классификация[]

Болезни нервной системы человека[]

Филогенез нервной системы[]

Существует несколько типов организации нервной системы, представленных в филогенезе:

  • Диффузная нервная система — представлена у кишечнополостных, можно считать ее прообразом ретикулярной структуры ЦНС позвоночных. Нервные клетки равномерно распределены по всему телу животного, и при раздражении одной дается генерализованный ответ — реагирует все тело.
  • Диффузно-узловая нервная система — некоторые нервные клетки собираются в ганглии, или узлы. Такой тип нервной системы представлен у плоских червей.
  • Узловая нервная система, или сложная ганглионарная система — представлена у полихет. Выделяется сегментация нервной системы, ганглии более дифференцированы, клетки в них специализированы и обслуживают отдельные органы. У моллюсков ганглии огромны, и настолько хорошо развиты, что позволяют вырабатывать условные рефлексы. У головоногих моллюсков же сложное объединение специализированных ганглиев с развитыми связями между ними образуют «протомозг». У членистоногих в головном отделе несколько крупных ганглиев объединяются. Это объединение может также формировать слои — то есть быть прообразом кортиколизации («грибовидные тела»).
  • Трубчатая нервная система

Нервная система беспозвоночных[]

Нервная система беспозвоночных, как правило, представлена двумя типами:

  • диффузный
  • узловой

Однако ряд примитивных хордовых имеет, как и все хордовые, обладают трубчатым типом нервной система (например, ланцетник).

Нервная система позвоночных[]

Нервная система позвоночных относится к трубчатому типу (нервная трубка).

Онтогенез нервной системы[]

Модели развития нервной системы[]

В настоящий момент нет единого положения о развитии нервной системе в онтогенезе. Основная проблема заключается в оценке уровня детерминированности (предопределения) в развитии тканей из зародышевых клеток. Наиболее перспективными моделями являются мозаичная модель и регуляционная модель. Ни та, ни другая не может в полной мере объяснить развитие нервной системы.

  • Мозаичная модель предполагает полное детерминирование судьбы отдельной клетки на протяжении всего онтогенеза.
  • Регуляционная модель предполагает случайное и изменяемое развитие отдельных клеток, при детерминированности только нейрального направления (то есть любая клетка определенной группы клеток может стать какой угодно в пределах возможности развития для этой группы клеток).

Для беспозвоночных мозаичная модель практически безупречна - степень детерминации их бластомеров очень высока. Но для позвоночных все гораздо сложнее. Некая роль детерминации и здесь несомненна. Уже на шестнадцатиклеточной стадии развития бластулы позвоночных можно с достаточной долей уверенности сказать, какой бластомер не является предшественником определенного органа.

Маркус Джакобсон в 1985 году ввел клональную модель развития головного мозга (близка к регуляционной). Он предположил, что детерминирована судьба отдельных групп клеток, представляющих собой потомство отдельного бластомера, то есть, "клонов" этого бластомера. Муди и Такасаки (независимо) развили эту модель в 1987. Построена карта 32-клеточной стадии развития бластулы. Например, установлено, что потомки бластомера D2 (вегетативный полюс) всегда встречаются в продолговатом мозге. С другой стороны, потомки почти всех бластомеров анимального полюса не имеют выраженной детерминации. У разных организмов одного вида они могут встречаться или не встречаться в определенных отделах головного мозга.

Регуляционные механизмы онтогенеза позвоночных[]

Выяснено, что развитие каждого бластомера зависит от наличия и концентрации специфических веществ — паракринных факторов, которые выделяются другими бластомерами. Например в опыте in vitro с апикальной частью бластулы, оказалось, что при отсутсвии активина (паракринного фактора вегетативного полюса), клетки разваваются в обычный эпидермис, а при его наличии, в зависимости от концентрации, по возрастанию ее: клетки мезенхимы, гладкомышечные, клетки хорды или клетки сердечной мышцы.

Все вещества, определяющие поведение и судьбу клеток, их воспринимающих, в зависимости от дозы (концентрации) морфогена в данном участке многоклеточного зародыша называются морфогенами.

Одни клетки секретируют во внеклеточное пространство растворимые активные молекулы (морфогены), убывающие от своего источника по градиенту концентрации.

Та группа клеток, чьё расположение и назначение задано в пределах одних и тех же границ (с помощью морфогенов), называется морфогенетическим полем. Судьба самого морфогенетического поля жестко определена. Каждое конкретное морфогенетическое поле отвечает за образование конкретного органа, даже если эту группу клеток трансплантировать в различные части зародыша. Судьбы же отдельных клеток внутри поля зафиксированы не столь жестко, так что они могут в известных пределах менять назначение, восполняя функции утраченных полем клеток. Концепция морфогенетического поля является более общим понятием, по отношению к нервной системе она отвечает регуляторной модели.

Эмбриональная индукция[]

Основная статья: Эмбриональная индукция


С понятиями морфоген и морфогенетическое поле тесно связано понятие эмбриональной индукции. Это, также общее для всех систем организма явление, впервые было показано на развитии нервной трубки.

Развитие[]

Нервная система образуется из эктодермы — наружного из трёх зародышевых листков. Между клетками мезодермы и эктодермы начинается паракринное взаимодействие, то есть в мезодерме вырабатывается специальное вещество — фактор роста нейронов, которое передаётся в эктодерму. Под влиянием фактора роста нейронов часть эктодермальных клеток превращается в нейроэпиталиальные клетки, причём образование нейроэпителиальных клеток происходит очень быстро — со скорость 250000 штук в минуту. Этот процесс называется нейрональной индукцией (частный случай эмбриональной индукции).

В результате образуется нервная пластинка, которая состоит из одинаковых клеток. Из неё образуются нервные валики, а из них — нервная трубка, которая обособляется из эктодермы (конкретно за образование нервной трубки и нервного гребня отвечает смена типов кадгерина, молекулы клеточной адгезии), уходя под неё. Механизм нейруляции несколько различается у низших и высших позвоночных. Замыкается нервная трубка не одновременно по всей длине. Прежде всего замыкание происходит в средней части, затем этот процесс распространяется к заднему и переднему её концам. На концах трубки сохраняется два незамкнутых участка — передний и задний нейропоры.

Затем происходит процесс дифференциации нейроэпителиальных клеток на нейробласты и глиобласты. Глиобласты дают начало астроцитам, олигодендроцитам и эпиндимным клеткам. Нейробласты становятся нейронами. Далее происходит процесс миграции — нейроны переносятся туда, где они будут выполнять свою функцию. За счёт конуса роста нейрон перетекает, подобно амёбе, а путь ему указывают отростки глиальных клеток. Следующий этап — агрегация (слияние однотипных нейронов, например, участвующих в образовании мозжечка, таламуса и пр). Нейроны узнают друг друга благодаря поверхностным лигандам — специальным молекулам, имеющимся на их мембранах. Объединившись, нейроны выстраиваются в необходимом для данной структуры порядке.

После этого идёт созревание нервной системы. Из конуса роста нейрона вырастает аксон, от тела отрастают дендриты.

Затем происходит фасцикуляция — объединение однотипных аксонов (образование нервов). Последний этап — запрограммированная гибель тех нервных клеток, в которых произошёл сбой за время формирования нервной системы (около 8 % клеток посылают свой аксон не туда, куда нужно).

История изучения нервной системы[]

Профессиональные сообщества по изучению нервной системы и профессиональные журналы[]

Общество нейронаук (SfN, the Society for Neuroscience)[1] – крупнейшая некомерческая международная организация, объединяющая более 38 тыс. ученых и врачей, занимающихся изучением мозга и нервной системы. Общество было основано в 1969 году, штаб-квартира находится в Вашингтоне. Основной его целью является обмен научной информацией между учеными. С этой целью ежегодно проводится международная конференция в различных городах США и издается Журнал нейронаук (The Journal of Neuroscience)[2]. Общество ведет просветительскую и образовательную работу.

Федерация европейских обществ нейронаук (FENS, the Federation of European Neuroscience Societies)[3] объединяет большое количество профессиональных обществ из европейских стран, в том числе и из России. Федерация была основана в 1998 году и является партнером американского общества нейронаук (SfN). Федерация проводит международную конференцию в разных европейских городах раз в 2 года и выпускает Европейский журнал нейронаук (European Journal of Neuroscience)[4].

.

См. также[]


Нервная система

Центральная нервная система:

Головной мозг - Структуры мозга - Спинной мозг


Периферическая нервная система:

Соматическая нервная система - Автономная нервная система - Симпатическая нервная система - Парасимпатическая нервная система - Энтеральная нервная система



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Нервная система. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement