ФЭНДОМ


Пусть S1(0) – замкнутый шар ||x|| ≤ 1 в банаховом пространстве X.

Будем называть линейный оператор А: X → Y ограниченным, если он ограничен на единичным шаре S1(0), т.е. если ограничено множество { ||Аx||, ||x|| ≤ 1}.

Согласно определению, если А ограничен, то существует постоянная с > 0 такая, что для любых x с ||x|| ≤ 1 справедливо неравенство ||Аx|| ≤ с


Теорема 2. А ограничен тогда и только тогда, когда справедлива оценка ||Аx|| ≤ с ||x|| для любых x из X, где с – постоянная.


Теорема 3. Пусть А: X → Y, А – линейный оператор, X, Y – банаховы пространства. Для того чтобы А был непрерывным, необходимо и достаточно, чтобы он был ограниченным.


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики