ФЭНДОМ


Pi-unrolled-720

Если принять диаметр окружности за единицу, то длина окружности — это число «пи».

Число \pi (произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».

История Править

Впервые обозначением этого числа греческой буквой \pi~ воспользовался британский математик Джонс (1706), а общепринятым оно стало после работ Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

Оценки Править

  • 2 знака после запятой:
    π ≈ 3,14
  • 510 знаков после запятой:
    π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…


Свойства Править

Соотношения Править

Известно много формул с числом \pi:

\frac2\pi=
\frac{\sqrt{2}}2\cdot
\frac{\sqrt{2+\sqrt2}}2\cdot
\frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdot \ldots
\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}
\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}
e^{\pi i} + 1 = 0\;
\int\limits_{-\infty}^{+\infty}\ e^{-x^2}{dx} = \sqrt{\pi}
\int\limits_{-\infty }^{+\infty }{\frac{\sin x}{x}dx}=\pi

Трансцендентность и иррациональность Править

Иррациональность числа \pi была впервые доказана Иоганном Ламбертом в 1767 году путём разложения числа \frac{e-1}{2^n} в непрерывную дробь. В 1794Лежандр привёл более строгое доказательство иррациональности чисел \pi и \pi^2.

В 1882 г. профессору Кёнигсбергского, позже Мюнхенского университетов Фердинанду Линдеману удалось доказать трансцендентность числа \pi. Доказательство упростил Феликс Клейн в 1894 г. Его доказательство приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 г.

Поскольку в геометрии Евклида площадь круга и длина окружности являются функциями числа \pi, то доказательство трансцендентности \pi положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.

До сих пор неизвестно, является ли \pi нормальным числом.

История вычисления Править

Архимед, возможно, первым предложил способ вычисления \pi математическим способом. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Так, для шестиугольника (см. рисунок) получается 3 < \pi < 2\sqrt{3}.

Рассматривая правильный 96-угольник, Архимед получил оценку 3+\frac{10}{71} < \pi <3+\frac{1}{7}.

В древнекитайских трудах попадаются самые разные оценки, из которых самая точная — это известное китайское число 355/113. Цзу Чунчжи (V век) даже считал это значение точным.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416

Заслуживает упоминания результат арабского математика Гиясэддина Джемшид ибн Масуд ал-Каши, завершившего в 1424 году труд под названием «Трактат об окружности», в котором он приводит 17 цифр числа \pi (из них 16 верных).

Лудольф ван Цейлен (15361610) затратил десять лет на вычисление числа \pi с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n=60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Cirkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \pi. Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \pi иногда называли «лудольфовым числом».

В Новое время для вычисления \pi используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 Джон Мэчин (John Machin):

\frac{\pi}{4} = 4\,\mathrm{arctg}\frac{1}{5} - \mathrm{arctg}\frac{1}{239}

Разложив арктангенс в ряд Тейлора, можно получить быстро сходящийся ряд, пригодный для вычисления числа \pi с большой точностью. Эйлер, автор обозначения \pi, получил 153 верных знака.

В 1873 году англичанин В. Шенкс потратил 15 лет и вычислил 707 знаков; правда, начиная с 527-го знака, все они оказались ошибочными. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков \pi.

Очень быстро работают вычислительные алгоритмы, основанные на формулах Рамануджана

\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum^\infty_{k=0} \frac{(4k)!(1103+26390k)}{(k!)^4 \, 396^{4k}}

и Чудновского

\frac{1}{\pi} = 12 \sum^\infty_{k=0} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 \, 640320^{3k + 3/2}}

В 1997 году Дэйвид Х. Бэйли, Питер Боруэйн и Саймон Плуфф открыли способ быстрого вычисления произвольной двоичной цифры числа \pi без вычисления предыдущих цифр, основанный на формуле

\pi = \sum_{i=0}^{\infty}\frac{1}{16^i}\left(\frac{4}{8i+1}-\frac{2}{8i+4}-\frac{1}{8i+5}-\frac{1}{8i+6}\right)

Метод иглы Бюффона Править

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой строго меньше расстояния между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросаний стремится к \frac2\pi при увеличении числа бросаний до бесконечности. Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[1]

Будет ли "пи" постоянной в ОТО? Править

В ОТО пространство и пространство-время описываются неевклидовой геометрией. В такой геометрии отношение длины окружности к ее диаметру может быть и больше, и меньше "пи". В той геометрии, которую использует релятивистская физика, это отношение настолько близко к "пи", что мы не замечаем разницы при обычных измерениях. Но это не значит, что "пи" меняется, потому что определение константы дано для евклидовой геометрии, а не для физической. Ни одна новая теория или эксперимент физики не в силах поменять значение математической постоянной.

Примечания Править

Ссылки Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Пи (число). Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики