Фэндом


Файл:Minkovsky fantas1.svg

Простра́нство Минко́вского ― четырёхмерное псевдоевклидово пространство сигнатуры (1,\;3), предложенное Германом Минковским в 1908 году в качестве геометрической интерпретации пространства-времени специальной теории относительности.

Каждому событию соответствует точка пространства Минковского, в лоренцевых (или галилеевых) координатах три координаты которой представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― координату ct, где cскорость света, t ― время события. Связь между пространственными расстояниями и промежутками времени, разделяющими события, характеризуется квадратом интервала:

s^2=c^2(t_1-t_0)^2- (x_1-x_0)^2 -(y_1-y_0)^2 -(z_1-z_0)^2.

(Нередко в качестве квадрата интервала берется противоположная величина, выбор знака — вопрос произвольного соглашения. Так, первоначально сам Минковский предложил именно противоположный знак для квадрата интервала).

Интервал в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замене одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве. Роль, аналогичную роли вращений координат в случае евклидова пространства, играют для пространства Минковского преобразования Лоренца.

Интервал аналогичен квадрату расстояния в евклидовом пространстве. В отличие от последнего интервал не положителен, также между различными событиями интервал может быть равен нулю.


N.B. Простра́нством Минко́вского также иногда называют[1] метрическое пространство которое получается из конечномерного нормированного пространства с функцией расстояния d(x,\;y)=\|y-x\|.

Связанные определения Править

  • Псевдометрика в пространстве Минковского, определяемая приведенной выше формулой для интервала, называется метрикой Минковского или лоренцевой метрикой. Под лоренцевой метрикой понимают или метрику, явно соответствующую этому определению в выбранных координатах (и определяющую таким образом выбор координат), или метрику, которая может быть сведена к таковой подходящим выбором непрерывных координат. Лоренцев метрический тензор обычно обозначается ~\eta_{ij}, он задаёт квадратичную форму сигнатуры (1,\;-1,\;-1,\;-1). Термин лоренцева метрика или метрика Минковского может применяться и в случаях размерностей, отличных от 4. Тогда это обычно означает, что одна координата играет роль времени, а остальные— пространственных координат.
  • Множество всех векторов с нулевым квадратом интервала образует коническую поверхность и называется световым конусом.
  • Вектор, лежащий внутри светового конуса, называется времениподобным вектором, вне светового конуса— пространственноподобным.
  • Событие в данный момент времени в данной точке называется мировой точкой.
  • Множество мировых точек, описывающее развитие какого-либо процесса или явления во времени, называется мировой линией.
  • Инерциальный наблюдатель: наблюдатель, который покоится либо движется равномерно и прямолинейно относительно инерциальной системы отсчета. В лоренцевых (галилеевых) координатах мировая линия этого наблюдателя выглядит особенно просто: x^i=x^i_0+u^i a\; , где a\; — параметр, а i изменяется от 1 до 4 — тогда временной координатой является четвёртая, или от 0 до 3 — тогда временная координата нулевая.
  • Интервал между двумя событиями, через которые проходит мировая линия инерциального наблюдателя, делённый на c, называется его собственным временем, так как эта величина совпадает со временем, измеренным движущимися вместе с наблюдателем часами. Для неинерциального наблюдателя собственное время между двумя событиями соответствует интегралу от интервала вдоль мировой линии.
  • Если вектор, соединяющий мировые точки, времениподобен, то существует система отсчета, в которой события происходят в одной и той же точке трёхмерного пространства.
  • Если вектор, соединяющий мировые точки двух событий, пространственноподобен, то существует система отсчета, в которой эти два события происходят одновременно; они не связаны причинно-следственной связью; модуль интервала определяет пространственное расстояние между этими точками (событиями) в этой системе отсчета.
  • Кривая, касательный вектор к которой в каждой ее точке времениподобен, называется времениподобной линией. Аналогично определяются пространственноподобные и изотропные («светоподобные») кривые.
  • Касательный вектор к мировой линии является времениподобным вектором.
  • Касательный вектор к световому лучу является изотропным вектором.
  • Группой движений пространства Минковского, то есть группой преобразований, сохраняющих метрику, является 10-параметрическая группа Пуанкаре, состоящая из 4 трансляций— 3 пространственных и 1 временно́й, 3 чисто пространственных вращений и 3 пространственно-временных вращений, иначе называемых бустами. Последние 6, взятые вместе, образуют подгруппу группы Пуанкаре— группу преобразований Лоренца. Таким образом, пространство Минковского является четырёхмерным метрическим пространством наивысшей возможной степени симметрии и имеет 10 векторов Киллинга.
  • Специфические физически значимые классы координат в пространстве Минковского— лоренцевы (или галилеевы) координаты, координаты Риндлера и координаты Борна.

Примечения Править

  1. К. Лейхтвейс, Выпуклые множества, Определение 11.2

Ссылки Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Пространство Минковского. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики