ФЭНДОМ


Система управления — систематизированный набор средств влияния на подконтрольный объект для достижения определённых целей данным объектом. Объектом системы управления могут быть как технические объекты так и люди. Объект системы управления может состоять из других объектов, которые могут иметь постоянную структуру взаимосвязей.

Системы управления с участием людей как объектов управления зачастую называют системами менеджмента.

Техническая система управления — устройство или набор устройств для манипулирования поведением других устройств или систем.

Объектом управления может быть любая динамическая система или её модель. Состояние объекта характеризуется некоторыми количественными величинами, изменяющимися во времени, то есть переменными состояния. В естественных процессах в роли таких переменных может выступать температура, плотность определенного вещества в организме, курс ценных бумаг и т. д. Для технических объектов это механические перемещения (угловые или линейные) и их скорость, электрические переменные, температуры и т. д. Анализ и синтез систем управления проводится методами специального раздела математики — теории управления.

Системы управления разделяют на два больших класса:

Типы систем автоматического управления Править

Файл:САУ.png

Система автоматического управления, как правило, состоит из двух основных элементов — объекта управления и управляющего устройства.

По цели управления Править

Объект управления — изменение состояния объекта в соответствии с заданным законом управления. Такое изменение происходит в результате внешних факторов, например вследствие управляющих или возмущающих воздействий.

Системы автоматического регулирования Править

  • Системы автоматической стабилизации. Выходное значение поддерживается на постоянном уровне (заданное значение — константа). Отклонения возникают за счёт возмущений и при включении.
  • Системы программного регулирования. Заданное значение изменяется по заранее заданному программному закону f. Наряду с ошибками, встречающимися в системах автоматического регулирования, здесь также имеют место ошибки от инерционности регулятора.
  • Следящие системы. Входное воздействие неизвестно. Оно определяется только в процессе функционирования системы. Ошибки очень сильно зависят от вида функции f(t).

Системы экстремального регулирования Править

Способны поддерживать экстремальное значение некоторого критерия (например минимальное или максимальное), характеризующего качество функционирования объекта. Критерием качества, который обычно называют целевой функцией, показателем экстремума или экстремальной характеристикой, может быть либо непосредственно измеряемая физическая величина (например, температура, ток, напряжение, влажность, давление), либо КПД, производительность и др.

Выделяют:

  • Системы с экстремальным регулятором релейного действия. Универсальный экстремальный регулятор должен быть хорошо масштабируемым устройством, способным исполнять большое количество вычислений в соответствии с различными методами.
    • Сигнум-регулятор используется как аналоговый анализатор качества, однозначно характеризующий лишь один подстраиваемый параметр систем. Он состоит из двух последовательно включенных устройств: Сигнум-реле (D-триггер) и исполнительный двигатель (интегратор).
    • Экстремальные системы с безинерционным объектом
    • Экстремальные системы с инерционным объектом
    • Экстремальные системы с плавающей характеристикой. Используется в случае, когда экстремум меняется непредсказуемым или сложно идентифицируемым образом.
  • Системы с синхронным детектором (экстремальные системы непрерывного действия). В прямом канале имеется дифференцирующее звено, не пропускающее постоянную составляющую. Удалить или зашунтировать по каким-либо причинам это звено невозможно или неприменимо. Для обеспечения работоспособности системы используется модуляция задающего воздействия и кодирование сигнала в прямом канале, а после дифференцирующего звена устанавливают синхронный детектор фазы.

Адаптивные системы автоматического управления Править

Служат для обеспечения желаемого качества процесса при широком диапазоне характеристик изменения объектов управления и возмущений.

По виду информации в управляющем устройстве Править

Замкнутые САУ Править

В замкнутых системах автоматизированного регулирования управляющее воздействие формируется в непосредственной зависимости от управляемой величины. Связь входа системы с его выходом называется обратной связью. Сигнал обратной связи вычитается из задающего воздействия. Такая обратная связь называется отрицательной.

Разомкнутые САУ Править

Сущность принципа разомкнутого управления заключается в жестко заданной задающим устройством программы управления, то есть не учитывается управлением влияние возмущений на характеристики процесса и осуществляется без контроля результата. Примеры таких систем : компьютер, часы, магнитофон и т. п. В свою очередь различают:

  • Разомкнутые по задающему воздействию
  • Разомкнутые по возмущающему воздействию

Характеристика САУ Править

В зависимости от описания переменных системы делятся на линейные и нелинейные. К линейным относятся системы, состоящие из элементов описания, которые задаются линейными алгебраическими или дифференциальными уравнениями.

Если все параметры уравнения движения системы не меняются во времени, то такая система называется стационарной. Если хотя бы один параметр уравнения движения системы меняется во времени, то система называется нестационарной или с переменными параметрами.

Системы, в которых определены внешние (задающие) воздействия и описываются непрерывными или дискретными функциями во времени относятся к классу детерминированных систем.

Системы, в которых имеет место случайные сигнальные или параметрические воздействия и описываются стохастическими дифференциальными или разностными уравнениями относятся к классу стохастических систем.

Если в системе есть хотя бы один элемент, описание которого задается уравнением частных производных, то система относится к классу систем с распределенными переменными.

Примеры систем автоматического управления Править

В зависимости от природы управляемых объектов можно выделить биологический, экологический, экономические и технические системы управления. В качестве примеров технического управления можно привести:

Типы систем автоматизированного управления Править

См. также Править

Ссылки Править

Литература Править

  • Первозванский А. А. Курс теории автоматического управления. М., Наука, 1986
  • Поляк Б. Т., Щербаков П. С. Робастная устойчивость и управление. М., Наука, 2002
  • Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. М., Наука, 1966
  • Цыпкин Я. З. Основы теории автоматических систем. М., Наука, 1977
  • Новиков Д.А. Теория управления организационными системами. 2-е изд. - М.: Физматлит, 2007.
  • Красовский А. А. Динамика непрерывных самонастраивающихся систем. М. 1963
  • Моросанов И. С. Релейные экстремальные системы. М., Наука, 1964
  • Кунцевич В. М. Импульсные самонастраивающиеся и экстремальные системы автоматического управления. К, Наука, 1966
  • Растригин Л. А. Системы экстремального управления. М., Наука, 1974



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Система управления. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики