ФЭНДОМ


Треугольная матрица — квадратная матрица, в которой все элементы ниже или выше главной диагонали равны нулю.

Файл:Trangle matrix.svg

Верхнетреугольная матрица — квадратная матрица, в которой все элементы ниже главной диагонали равны нулю.

Нижнетреугольная матрица — квадратная матрица, в которой все элементы выше главной диагонали равны нулю.

Унитреугольная матрица (верхняя или нижняя) — треугольная матрица, в которой все элементы на главной диагонали равны единице.

Треугольные матрицы используются в первую очередь при решении линейных систем уравнений, когда матрица системы сводится к треугольному виду используя следующую теорему:

Любую ненулевую матрицу A_{n\times n} путём элементарных преобразований над строками и перестановкой столбцов можно привести к треугольному виду. Треугольная матрица/рамка Решение систем линейных уравнений с треугольной матрицей (обратный ход) не представляет сложностей.

Свойства Править

  • Определитель треугольной матрицы равен произведению ее диагональных элементов.
  • Определитель унитреугольной матрицы равен единице.
  • Множество невырожденных верхнетреугольных матриц порядка n по умножению с элементами из поля k образует группу, которая обозначается UT(n, k) или UTn (k).
  • Множество невырожденных нижнетреугольных матриц порядка n по умножению с элементами из поля k образует группу, которая обозначается LT(n, k) или LTn (k).
  • Множество верхних унитреугольных матриц с элементами из поля k образует подгруппу UTn (k) по умножению, которая обозначается SUT(n, k) или SUTn (k). Аналогичная подгруппа нижних унитреугольных матриц обозначается SLT(n, k) или SLTn (k).
  • Множество всех верхнетреугольных матриц с элементами из кольца k образует алгебру относительно операций сложения, умножения на элементы кольца и перемножения матриц. Аналогичное утверждение справедливо для нижнетреугольных матриц.
  • Группа UTn разрешима, а её унитреугольная подгруппа SUTn нильпотентна.

См. также Править



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Треугольная матрица. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики