Фэндом

Виртуальная лаборатория

Уравнение Дирака

204 622статьи на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Уравнение Диракаквантовое уравнение движения электрона, удовлетворяющее требованиям теории относительности, применимое также для описание других точечных фермионов со спином 1/2; установлено П. Дираком в 1928.

Вид уравненияПравить

Уравнение Дирака записывается в виде

 \left(mc^2\alpha_0 + c \sum_{j = 1}^3 \alpha_j p_j\right) \psi (\mathbf{x},t) = i \hbar \frac{\partial\psi}{\partial t} (\mathbf{x},t)

где m\ масса покоя электрона (или другого фермиона, описываемого уравнением), c\ скорость света, p_j = - i \hbar \partial_j — три оператора компонент импульса (по x,y,z), \hbarпостоянная Планка, x=(x,y,z) и t пространственные координаты и время соответственно, и \psi(\mathbf{x},t) — четырёхкомпонентная комплексная волновая функция (биспинор).

\alpha_0, \alpha_1, \alpha_2, \alpha_3\ линейные операторы над пространством биспиноров, которые действуют на волновую функцию. Эти операторы подобраны так, что каждая пара таких операторов антикоммутирует, а квадрат каждого равен единице:

\alpha_i\alpha_j = -\alpha_j\alpha_i\ , где i\ne j и индексы i,j\ меняются от 0 до 3,
\alpha_i^2 = 1 для i\ от 0 до 3.

В обсуждаемом представлении эти операторы представляются матрицами размера 4×4 (это минимальный размер матриц, для которых выполняются условия антикоммутации), называемыми альфа-матрицами Дирака [1].

  • Весь оператор в скобках в левой части уравнения называется оператором Дирака, точнее, в современной терминологии его следует называть гамильтонианом Дирака, т.к. оператором Дирака сейчас обычно принято называть ковариантный оператор D, с которым уравнение Дирака записывается в виде =0 (как описано в следующем замечании).
\left(i\hbar c \, \gamma^\mu \, \partial_\mu - mc^2 \right) \psi = 0

Физический смыслПравить

Электрон, позитронПравить

Из уравнения Дирака следует, что электрон обладает собственным механическим моментом количества движения — спином, равным ħ/2, а также собственным магнитным моментом, равным магнетону Бора eħ/mc, которые ранее (1925) были открыты экспериментально (e и m — заряд и масса электрона, с — скорость света, ħ — постоянная Планка). С помощью уравнения Дирака была получена более точная формула для уровней энергии атома водорода (и водородоподобных атомов), включающая тонкую структуру уровней (см. Атом), а также объяснён эффект Зеемана. На основе уравнения Дирака были найдены формулы для вероятностей рассеяния фотонов свободными электронами (комптон-эффекта) и излучения электрона при его торможении (тормозного излучения), получившие экспериментальное подтверждение. Однако последовательное релятивистское описание движения электрона даётся квантовой электродинамикой.

Характерная особенность уравнения Дирака — наличие среди его решений таких, которые соответствуют состояниям с отрицательными значениями энергии для свободного движения частицы (что соответствует отрицательной массе частицы). Это представляло трудность для теории, так как все механические законы для частицы в таких состояниях были бы неверными, переходы же в эти состояния в квантовой теории возможны. Действительный физический смысл переходов на уровни с отрицательной энергией выяснился в дальнейшем, когда была доказана возможность взаимопревращения частиц. Из уравнения Дирака следовало, что должна существовать новая частица (античастица по отношению к электрону) с массой электрона и электрическим зарядом противоположного знака; такая частица была действительно открыта в 1932 К. Андерсоном и названа позитроном. Это явилось огромным успехом теории электрона Дирака. Переход электрона из состояния с отрицательной энергией в состояние с положительной энергией и обратный переход интерпретируются как процесс образования пары электрон-позитрон и аннигиляция такой пары.

Применение для других частицПравить

Уравнение Дирака справедливо и для др. частиц со спином 1/2 (в единицах ħ) — фермионов, например мюонов, нейтрино, при этом хорошее соответствие опыту получается при прямом применении уравнения Дирака к простым (а не составным) частицам, как те, которые только что упомянуты. Для протона и нейтрона (составных частиц, состоящих из кварков, связанных глюонным полем, но также обладающих спином 1/2) оно при прямом применении (как к простым частицам) приводит к неправильным значениям магнитных моментов: магнитный момент «дираковского» протона «должен быть» равен ядерному магнетону eħ/2Мc (М — масса протона), а нейтрона (поскольку он не заряжен) — нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Аномальные магнитные моменты этих частиц обусловлены их сильными взаимодействиями.

В действительности данное уравнение применимо для кварков, которые также являются элементарными частицами со спином 1/2. Модифицированное уравнение Дирака можно использовать для описания протонов и нейтронов, которые не являются элементарными частицами (они состоят из кварков). Другую модификацию уравнения Дирака уравнение Майорана применяют для описания нейтрино.

Уравнение Дирака и квантовая теория поляПравить

Уравнение Дирака описывает амплитуду вероятности для одного электрона. Теория, включающая лишь уравнение Дирака (описывающее само по себе свободный электрон, не взаимодействующий ни с каким полем), не принимает в расчёт рождение и уничтожение частиц. Она хорошо предсказывает магнитный момент электрона и тонкую структуру линий в спектре атомов. Она объясняет спин электрона, поскольку два из четырёх решений уравнения соответствуют двум спиновым состояниям электрона. Два оставшихся решений с отрицательной энергией соответствуют античастице электрона (позитрону), предсказанной Дираком исходя из его теории и почти сразу же вслед за этим открытой экспериментально.

Несмотря на эти успехи, теория имеет недостаток, не принимая во внимание взаимодействие электрона с электромагнитным полем, в том числе и рождение/уничтожение частиц — один из фундаментальных процессов релятивистской теории взаимодействующих полей. Эта трудность разрешена в квантовой теории поля. В случае электрона - добавляя квантованное электромагнитное поле и взаимодействие электрона с ним, эта теория называется квантовой электродинамикой.

Решение уравнения Править

Для решения уравнения в случае свободной частицы привлекается спинор \chi

\chi^{(1)} = \begin{bmatrix}
1\\
0 \end{bmatrix}, \quad \quad \chi^{(2)} = \begin{bmatrix}
0\\
1 \end{bmatrix} \,
где \chi^{(1)} \, соответствует спину вверх, а \chi^{(2)} \, соответствует спину вниз.

Для античастиц верно обратное:

\chi^{*(1)} = \begin{bmatrix}
0\\
1 \end{bmatrix}, \quad \quad \chi^{*(2)} = \begin{bmatrix}
1\\
0 \end{bmatrix} \,

Введём также матрицы Паули,


\sigma_1 = 
\begin{pmatrix}
0&1\\
1&0
\end{pmatrix}
\quad \quad
\sigma_2 = 
\begin{pmatrix}
0&-i\\
i&0
\end{pmatrix}
\quad \quad
\sigma_3 = 
\begin{pmatrix}
1&0\\
0&-1
\end{pmatrix}

Для частицПравить

Решение уравнения Дирака для свободных частиц запишется в виде

\psi = u(\mathbf{p}) e^{i p \cdot x} \,
где
\mathbf{p} \, - обычный трёхмерный вектор, а
p и x - 4-векторы.

Биспинор u является функцией момента и спина,

 u^{(s)}(\mathbf{p}) = \sqrt{E+m} 
\begin{bmatrix} 
\chi^{(s)}\\ 
\frac{\mathbf{\sigma} \cdot \mathbf{p} }{E+m} \chi^{(s)}
\end{bmatrix} \,

Для античастицПравить

\psi = v(\mathbf{p}) e^{i p \cdot x} \,

с

 v^{(s)}(\mathbf{p}) = \sqrt{|E|+m} 
\begin{bmatrix}
\frac{- \mathbf{\sigma} \cdot \mathbf{p} }{|E|+m} \chi^{*(s)} \\ 
\chi^{*(s)}
\end{bmatrix} \,

БиспинорыПравить

Полные соотношения для биспиноров u и v:

\sum_{s=1,2}{u^{(s)}_p \bar{u}^{(s)}_p} = p\!\!\!/ + m \,
\sum_{s=1,2}{u^{(s)}_p \bar{v}^{(s)}_p} = p\!\!\!/ - m \,
где
a\!\!\!/ = \gamma^\mu p_\mu  \, (определение \gamma^\mu\, - см. чуть ниже).

Гамма-матрицы Дирака Править

Гамма-матрицы Дирака, используемые в лоренц-ковариантной форме уравнения Дирака, определяются через альфа-матрицы так:

 \gamma^0 \ \stackrel{\mathrm{def}}{=}\  \alpha_0 \,,\quad \gamma^j \ \stackrel{\mathrm{def}}{=}\  \alpha_0 \alpha_j.

Вывод уравнения Дирака Править

Уравнение Дирака - релятивистское обобщение уравнения Шрёдингера:

 H \left| \psi (t) \right\rangle = i \hbar {d\over d t} \left| \psi (t) \right\rangle.

Для удобства мы будем работать в координатном представлении, в котором состояние системы задаётся волновой функцией ψ(x,t). В этом представлении уравнение Шрёдингера запишется в виде

 H \psi (\mathbf{x},t) = i \hbar \frac{\partial\psi}{\partial t} (\mathbf{x},t)

где гамильтониан H теперь действует на волновую функцию.

Мы должны определить гамильтониан так, чтобы он описывал полную энергию системы. Рассмотрим свободный электрон (ни с чем не взаимодействующий, изолированный от всех посторонних полей). Для нерелятивистской модели мы взяли бы гамильтониан аналогичный кинетической энергии в классической механике (не принимая во внимание в этом случае ни релятивистских поправок, ни спина):

 H = \sum_{j=1}^3 \frac{p_j^2}{2m},

где pj - операторы проекций импульса, где индекс j=1,2,3 обозначают декартовы координаты. Каждый такой оператор действует на волновую функцию как пространственная производная:

p_j \psi(\mathbf{x},t) \ \stackrel{\mathrm{def}}{=}\  - i \hbar \, \frac{\partial\psi}{\partial x_j} (\mathbf{x},t)

Чтобы описать релятивистскую частицу, мы должны найти другой гамильтониан. При этом есть основания предполагать, что оператор импульса сохраняет приведенное только что определение. Согласно релятивистскому соотношению, полная энергия системы выражается как

E = \sqrt{(mc^2)^2 + \sum_{j=1}^3 (p_jc)^2}.

Это приводит к выражению

 \sqrt{(mc^2)^2 + \sum_{j=1}^3 (p_jc)^2} \ \psi = i \hbar \frac{d\psi}{d t}.

Это не вполне удовлетворительное уравнение, так как не видно явной лоренц-ковариантности (выражающей формальное равноправие времени и пространственных координат, что является одним из краеугольных камней специальной теории относительности), а кроме того - написанный корень из оператора не выписан явно. Однако возведение в квадрат левой и правой части приводит к явно лоренц-ковариантному уравнению Клейна-Гордона. Дирак предположил, что поскольку правая часть уравнения содержит первую производную по времени, то и левая часть должна иметь только производные первого порядка по пространственным координатам (иначе говоря - операторы импульса в первой степени). Тогда, полагая, что коэффициенты перед производными, какую бы природу они ни имели, - постоянные (вследствие однородности пространства), остается только записать:

i\hbar \frac{d\psi}{dt} = \left[ c \sum_{i=1}^3 \alpha_i p_i + \alpha_0 mc^2 \right] \psi

- это и есть уравнение Дирака (для свободной частицы).

Однако мы пока не определили коэффициенты \alpha_i\ . Если верно предположение Дирака, то правая часть, возведенная в квадрат, должна дать

 (mc^2)^2 + \sum_{j=1}^3 (p_jc)^2

т.е.

 \left( mc^2 \alpha_0 + c \sum_{j=1}^3 \alpha_j p_j \,\right)^2 
= (mc^2)^2 + \sum_{j=1}^3 (p_jc)^2.

Просто раскрывая скобки в левой части получившегося уравнения, получаем следующие условия на α:

 
\alpha_i \alpha_j + \alpha_j \alpha_i = 0\,, для всех  i,j = 0, 1, 2, 3 (i \ne j),
 
\alpha_i^2 = 1\,, для всех  i = 0, 1, 2, 3.\

или, сокращенно записав всё вместе:

 \alpha_i \alpha_j + \alpha_j \alpha_i = 2 \delta_{ij}\ для \ i,j = 0, 1, 2, 3,

или, еще короче, пользуясь фигурными скобками для обозначения антикоммутаторов:


\left\{\alpha_i , \alpha_j\right\} = 2\delta_{ij}\ для \  i,j = 0, 1, 2, 3.

где {,} - антикоммутатор,определяемый как {A,B}≡AB+BAδij - символ Кронекера, который принимает значение 1 если два индекса равны и в противном случае 0. Смотрите алгебра Клиффорда.


Поскольку такие соотношения не могут выполняться для обычных чисел (ведь числа коммутируют, а α - нет), остается - проще всего - предположить, что α - это некие линейные операторы или матрицы (тогда единицы и нули в правой части соотношений можно считать соответственно единичными и нулевыми оператором или матрицей) и можно попытаться найти конкретный набор α, воспользовавшись этими соотношениями (и это удается).

Именно здесь становится впервые становится совершенно ясно, что волновая функция должна быть не однокомпонентной (т.е. не скалярной), а векторной, имея в виду векторы какого-то абстрактного "внутреннего" пространства, не связанного прямо с обычным физическим пространством или пространством-временем.

Матрицы должны быть эрмитовы, так чтобы гамильтониан тоже был эрмитовым оператором. Наименьшая размерность матриц, которые удовлетворяют данным выше критериям это комплексные матрицы 4×4, хотя их конкретный выбор (или представление) не однозначен. Эти матрицы с операцией матричного умножения образуют группу. Хотя выбор представления этой группы не влияет на свойства уравнения Дирака, он влияет на физический смысл компонент волновой функции. Волновая функция же, очевидно, должна тогда быть четырехмерным комплексным абстрактным (не связанным прямо с векторами обычного пространства-времени) векторным полем (т.е. биспинорным полем).

Во введении мы привели представление, использованное Дираком. Это представление можно правильно записать как

\alpha_0 = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \quad \alpha_j = \begin{bmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{bmatrix}

где 0 и I - 2×2 нулевая и единичная матрицы соответственно, и σj (j = 1, 2, 3) - матрицы Паули, являющиеся, кстати, матричным представлением кватернионов, о которых давно известно, что они антикоммутируют.

Гамильтониан в этом уравнении

 H = \,mc^2 \alpha_0 + c \sum_{j = 1}^3 \alpha_j p_j\,

называется гамильтонианом Дирака.

  • Для обычного уравнения Дирака в двумерном пространстве или в трехмерном, но с m=0, вместо альфа-матриц достаточно просто матриц Паули; вместо четырехкомпонентного биспинорного поля при этом роль волновой функции будет играть двухкомпонентное спинорное.

Уравнение Дирака в представлении кватернионов Править

Уравнение Дирака можно просто записать в представлении использующем кватернионы. Мы запишем его в терминах представления двух полей над кватернионами для правых (Ψ) левых (Φ) электронов:

 \partial_t\psi i + i \partial_x \psi+j \partial_y \psi + k\partial_z \psi= m_e \phi j,
 \partial_t\phi i - i \partial_x \phi-j \partial_y \phi- k\partial_z \phi = m_e \psi j.

Здесь важно с какой стороны единичные кватернионы умножаются. Заметим, что массовый и временной члены умножаются справа на кватернионы. Это представление уравнения Дирака используется в компьютерном моделировании.

Природа волновой функции Править

Поскольку на волновую функцию ψ действуют матрицы 4×4, она должна быть четырёхкомпонентным объектом. Мы увидим в следующем параграфе, что волновая функция состоит из двух степеней свободы, одна из которых соответствует положительным энергиям, а другая отрицательным. Каждая из них имеет ещё по две степени свободы, связанные с проекцией спина на выделенное направление , условно часто обозначаемые словами «вверх» или «вниз».

Мы можем записать волновую функцию в виде столбца:

\psi(\mathbf{x},t) \ \stackrel{\mathrm{def}}{=}\  \begin{bmatrix}\psi_1(\mathbf{x},t) \\ \psi_2(\mathbf{x},t) \\ \psi_3(\mathbf{x},t) \\ \psi_4(\mathbf{x},t) \end{bmatrix}.

Дуальную волновую функцию записывают в виде строки:

\psi^\dagger\ \stackrel{\mathrm{def}}{=}\psi^\dagger(\mathbf{x},t) \ \stackrel{\mathrm{def}}{=}\  \begin{bmatrix}\psi_1^*(\mathbf{x},t) & \psi_2^*(\mathbf{x},t) & \psi_3^*(\mathbf{x},t) & \psi_4^*(\mathbf{x},t) \end{bmatrix}

где символ * обозначает комплексное сопряжение.

Как и для обычной однокомпонентной волновой функции можно ввести квадрат модуля волновой функции, который даёт плотность вероятности как функцию координаты x и времени t. В данном случае роль квадрата модуля играет скалярное произведение волновой функции и дуальной ей, т.е. квадрат эрмитовой нормы биспинора:

\psi^\dagger \psi = \psi^\dagger(\mathbf{x},t) \psi \, (\mathbf{x},t) = \sum_{a = 1}^4 \psi_a^*(\mathbf{x},t) \psi_a(\mathbf{x},t).

Сохранение вероятности задаёт условие нормировки

\int \psi^\dagger \psi \; d^3x = 1.

Привлекая уравнение Дирака можно получить "локальный" ток вероятности:

\frac{\partial}{\partial t} \psi^\dagger \psi \, (\mathbf{x},t) = - \nabla \cdot \mathbf{J}.

Ток вероятности J задаётся как

 J_j = c \psi^\dagger \alpha_j \psi.

Умножая J на заряд электрона e, приходим к плотности электрического тока j для электрона.

Значение компонент волновой функции зависит от координатной системы. Дирак показал как ψ преобразуется при изменении координатной системы, включая повороты в трёхмерном пространстве и преобразования между (быстро) движущимися друг относительно друга системами отсчёта. ψ при этом не преобразуется как вектор обычного пространтва (или пространства-времени) при вращениях пространства или преобразованиях Лоренца (что само по себе и не удивительно, т.к. его компоненты изначально не связаны прямо с направлениями в обычном пространстве). Такой объект получил название четырехкомпонентного дираковского спинора (иначе называемого биспинором - последнее название связано с тем, что первоначально в качестве спиноров рассматривались только двухкомпонентные комплексные объекты, пара которых может образовать биспинор). Биспинор можно интерпретировать как вектор в особом пространстве, называемом обычно "внутренним пространством", не пересекающемся с обычным пространством. Однако, как уже было сказано выше, компоненты спинорных волновых функций преобразуются вполне определенным, хотя и отличающемся от преобразования компонент векторов обычного ("внешнего") пространства образом, при преобразовании координат внешнего пространства.

Точности ради следует сказать, что можно все изменения, связанные с поворотами координат во внешнем пространстве, перенести на матрицы α (которые тогда будут выглядеть по-разному для разных внешних систем координат, но будут сохранять свои основные свойства - антикоммутации и единичности квадрата каждой), в этом случае компоненты (би-)спиноров вообще не будут меняться при поворотах внешнего пространства.

Энергетический спектр Править

Полезно найти собственные значения энергии гамильтониана Дирака. Для того чтобы это сделать мы должны решить стационарное уравнение Шрёдингера

H \psi_0 (\mathbf{x}) = E \psi_0(\mathbf{x})

где ψ0 - независимая от времени часть полной волновой функции

\psi (\mathbf{x}, t) = \psi_0 (\mathbf{x}) e^{- i E t / \hbar}.

Будем искать решение в виде плоских волн. Для удобства выберем в качестве оси движения ось z. Таким образом

 \psi_0 = w e^{\frac{ipz}{\hbar}}

где w - постоянный четырёхкомпонентный спинор и p - импульс частицы, как можно показать действуя оператором импульса на эту волновую функцию. В представлении Дирака уравнение для ψ0 сводится к задаче на собственные значения:

 \begin{bmatrix} mc^2 & 0 & pc & 0 \\ 0 & mc^2 & 0 & -pc \\ pc & 0 & -mc^2 & 0 \\ 0 & -pc & 0 & -mc^2 \end{bmatrix} w = E w.

Для каждого значения p, существует два двумерных пространства собственных значений. Одно пространство собственных значений содержит положительные собственные значения, а друге - отрицательные в виде

E_\pm (p) = \pm \sqrt{(mc^2)^2 + (pc)^2}.

пространство с положительными собственными значениями порождается собственными состояниями:

\left\{ \begin{bmatrix}pc \\ 0 \\ \epsilon \\ 0 \end{bmatrix} \,,\, \begin{bmatrix}0 \\ pc \\ 0 \\ - \epsilon \end{bmatrix} \right\} \times \frac{1}{\sqrt{\epsilon^2+(pc)^2}}

и для отрицательных:

\left\{ \begin{bmatrix}-\epsilon \\ 0 \\ pc \\ 0 \end{bmatrix} \,,\, \begin{bmatrix}0 \\ \epsilon \\ 0 \\ pc \end{bmatrix} \right\} \times \frac{1}{\sqrt{\epsilon^2+(pc)^2}}

где

\epsilon \ \stackrel{\mathrm{def}}{=}\  |E| - mc^2.

Первое порождающее собственное состояние в каждом собственном пространстве имеет положительную проекцию спина на z напревление ("спин вверх"), и второе собственное состояние имеет спин указывающий и противоположном направлении −z ("спин вниз").

В нерелятивистском пределе ε компонента спинора уменьшается до кинетической энергии частицы, которая пренебрежимо мала в сравнении с pc:

\epsilon \sim \frac{p^2}{2m} \ll  pc.

В этом пределе четырёхкомпонентную волновую функцию можно интерпретировать как относительную амплитуду (i) спин вверх с положительной энергией, (ii) спин вниз с положительной энергией, (iii) спин вверх с отрицательной энергией, и (iv) спин вниз с отрицательной энергией. Это описание не точно в релятивистском случае, где ненулевые компоненты спинора имеют тот же порядок величины.

Дырочная теория Править

Найденные в предыдущей секции решения c отрицательными энергиями проблематичны, поскольку предполагалось, что частица имеет положительную энергию. Математически говоря, однако, кажется, нет никакой причины для нас, чтобы отклонить решения отрицательной энергии. Так как они существуют, мы не можем просто игнорировать их, как только мы включаем взаимодействие между электроном и электромагнитным полем, любой электрон, помещенный в состояние с положительной энергией перешёл бы в состояние с отрицательной энергией успешно понизив энергию, испуская лишнюю энергию в форме фотонов. Реальные электроны очевидно не ведут себя таким образом.

Чтобы справляться с этой проблемой, Дирак вводил гипотезу, известную как дырочная теория, что вакуум - это многочастичное квантовое состояние, в котором все состояния с отрицательной энергией заняты. Это описание вакуума как "море" электронов называют морем Дирака. Поскольку принцип запрета Паули запрещает электронам занимать то же самое состояние, любой дополнительный электрон был бы вынужден занять состояние с положительной энергией, и электроны с положительной энергии не будут переходить в состояния с отрицательной энергией.


Дирак далее рассуждал, что если состояния с отрицательной энергией не полностью заполнены, каждое незанятое состояние – назваемое дыркой – вело бы себя как положительно заряженная частица. Отверстие обладает "положительной" энергией, так как энергия необходима для создания пары частица–дырка из вакуума. Как отмечено выше, Дирак первоначально думал, что дырка могла бы быть протоном, но Вейль указал, что дырка должна вести себя, как будто она имеет ту же самую массу как электрон, тогда как протон более чем в 1800 раз тяжелее. Дырка была в конечном счете идентифицирована как позитрон, экспериментально обнаруженный Карлом Андерсоном в 1932.

Описание "вакуума" через бесконечное море электронов отрицательной энергии не вполне удовлетворительно. Бесконечно отрицательные вклады от моря электронов отрицательной энергии должны быть сокращены с бесконечной положительной "голой" энергией и вкладом в плотность заряда, и ток, идущий от моря электронов отрицательной энергии точно сокращается с бесконечным положительным фоном "желе" так, чтобы полная электрическая плотность заряда вакуума равнялась нулю. В квантовой теории поля, преобразование Боголюбова операторов рождения и уничтожения (превращающий занятое электроное состояние с отрицательной энергией в незаполненное позитронное состояние с положительной энергией и незанятое электронное состояние с отрицательной энергией в занятое позитронное состояние с положительной энергией) позволяет нам обходить формализм моря Дирака даже при том, что, формально, эти подходы эквивалентны.

В определенных применениях в физике твёрдого тела, однако, основные понятия "дырочной теории" являются корректными. Море электронов проводимости в проводнике, называют морем Ферми, содержит электроны с энергиями до химического потенциала системы. Незаполненные состояние в море Ферми ведут себя как положительно-заряженный электроны, хотя это "дырка", а не "позитрон". Отрицательный заряд моря Ферми уравновешен положительно-заряженной ионной решеткой материала.

Электромагнитное взаимодействие Править

Пока, мы рассмотрели электрон, который на который не действует никаких внешних полей. Переходя по аналогии с гамильтониан заряженной частицы в классической электродинамике, мы можем изменить гамильтониан Дирака, чтобы включить эффект электромагнитного поля. Переписанный гамильтониан - (в единицах SI):

H = \alpha_0 mc^2 + \sum_{j=1}^3 \alpha_j \left[p_j - e A_j(\mathbf{x}, t) \right] c + e \varphi(\mathbf{x}, t)

где e - электрический заряд электрона (здесь принято соглашение, что знак e отрацателен), а A и φ - электромагнитные векторный и скалярный потенциалы, соответственно.

Полагая φ = 0 и работая в нерелятивистском пределе, Дирак, нашёл для двух верхних компонент в положительной области энергий волновые функции (которые, как обсуждено ранее, являются доминирующими компонентами в нерелятивистском пределе):

 \left( \frac{1}{2m} \sum_j |p_j - e A_j(\mathbf{x}, t)|^2 - \frac{\hbar e}{2mc} \sum_j \sigma_j B_j(\mathbf{x}) \right) \begin{bmatrix}\psi_1 \\ \psi_2 \end{bmatrix}
 = (E - mc^2) \begin{bmatrix}\psi_1 \\ \psi_2 \end{bmatrix}

где B = \nabla× A - магнитное поле действующее на частицу. Это уравнение Паули для нерелятивистских частиц с полуцелым спином, с магнитным моментом \hbar e/2mc (то есть, g-фактор равняется 2). Фактический магнитный момент электрона больше чем это значение, хотя только примерно на 0.12 %. Несоответствие происходит из-за квантовых колебаний в электромагнитного поля, которыми пренебрегли. См. вершинная функция.

В течение нескольких лет после открытия уравнения Дирака, большинство физиков полагало, что оно также описывает протон и нейтрон, которые являются фермионами с полуцелым спином. Однако, начинаясь с экспериментов Стерна и фриша в 1933, найденные магнитные моменты этих частиц не совпадают значительно с предсказанными из уравнения Дирака значениями. Протон имеет магнитный момент, в 2.79 раза больший чем предсказанный (с протонной массой, вставленной для m в вышеупомянутые формулы), то есть, g-фактор равен 5.58. Нейтрон, который является электрически нейтральным, имеет g-фактор−3.83 . Эти "аномальные магнитные моменты" были первым экспериментальным признаком, что протон и нейтрон не элементарные (а составные или, говоря более общим образом, имеющие некоторую внутреннюю структуру) частицы. Впоследствии оказалось, что их можно считать состоящими из меньших частиц, названных кварками, связанными, как полагают, глюонным полем. Кварки имеют полуцелый спин и, насколько известно, точно описываются уравнением Дирака.

Гамильтониан взаимодействия Править

Заслуживает внимания факт, что гамильтониан может быть записан как сумма двух слагаемых:

H = H_{\mathrm{free}} + H_{\mathrm{int}} \,

где Hfree - гамильтониан Дирака для свободного электрона и Hint - гамильтониан взаимодействия электрона с электромагнитным полем. Последний запишется в виде

H_{\mathrm{int}} = e \varphi(\mathbf{x}, t) - ec \sum_{j=1}^3 \alpha_j A_j(\mathbf{x}, t).

Он имеет математическое ожидание (среднее)

\langle H_{\mathrm{int}} \rangle = \int \, \psi^\dagger H_{\mathrm{int}} \psi \, d^3x = \int \, \left(\rho \varphi - \sum_{i=1}^3 j_i A_i \right) \, d^3x

где ρ - плотность электрического заряда и j - плотность электрического тока, определённые через ψ. Подынтегральная функция в последнем интеграле - плотность энергии взаимодействия - лоренц-инвариантная скалярная величина, что легко увидеть, записав в терминах четырехмерной плотности тока j = (ρc, j) и четырехмерного электромагнитного потенциала A = (φ/c, A) - каждый из которых является 4-вектором, а следовательно их скалярное произведение инвариантно. И энергия заимодействия записывается как интеграл по пространтву от этого инварианта:

\langle H_{\mathrm{int}}  \rangle = \int \, \left( \sum_{\mu,\nu = 0}^3 \eta^{\mu\nu} j_\mu A_\nu \right) \; d^3x

где η - метрика плоского пространства Минковского (лоренцева метрика пространства-времени):

\eta^{00} = 1,\
\eta^{ii} \;= -1 \quad\, (i=1,2,3),
\eta^{\mu\nu} = 0 \ \ \ \ (\mu, \nu = 0,1,2,3; \mu \ne \nu).

А следовательно - проинтегрированная по времени энергия взаимодействие даст лоренц-инвариантный член в действии (т.к. повороты и преобразования Лоренца не меняют четырехмерный объем).

Лагранжиан Править

Классическая плотность лагранжиана фермиона с полуцелым спином с массой m задаётся

\mathcal{L} = \overline{\psi} \left(i \gamma^\mu \partial_\mu - m \right) \psi \,

где \overline{\psi} = \psi^\dagger \gamma^0. \,

Для получения уравнений движения можно подставить этот лагранжиан в уравнения Эйлера — Лагранжа:

 \partial_\mu \left( \frac{\partial L}{\partial ( \partial_\mu \psi_\sigma )} \right) - \frac{\partial L}{\partial \psi_\sigma} = 0. \,

Оценив два члена:

\frac{\partial L}{\partial (\partial_\mu \psi_\sigma ) } = \overline{\psi}_{\sigma^\prime} \left( i \gamma^\mu \right)_{\sigma^\prime \sigma} \,
\frac{\partial L}{\partial \psi_\sigma} = -m \overline{\psi}_{\sigma} \,

И собрав оба результата, получим уравнение

i \partial_\mu \overline{\psi} \gamma^\mu + m \overline{\psi} = 0 \,,

которое идентично уравнению Дирака:

i \gamma^\mu \partial_\mu \psi - m \psi = 0. \,

Релятивистски ковариантная форма Править

Ковариантная запись уравнения Дирака для свободной частицы выглядит так:

\left(i\hbar c \, \sum_{\mu=0}^3 \; \gamma^\mu \, \partial_\mu - mc^2 \right) \psi = 0

или, исползуя правило Эйнштейна суммирования по повторяющемуся индексу, так:

\left(i\hbar c \, \gamma^\mu \, \partial_\mu - mc^2 \right) \psi = 0

Пояснения: Править

Часто полезно бывает использовать уравнение Дирака в релятивистски ковариантной форме, в которой пространственные и временные координаты рассматриваются формально равноправно.

Чтобы сделать это сначала вспомним, что оператор момента p действует как пространственная производная:

\mathbf{p} \psi(\mathbf{x},t) = - i \hbar \nabla \psi(\mathbf{x},t).

Умножая уравнение Дирака с каждой стороны на α0 (вспоминая что α0²=I) и подставляя его в определение для p, получим

 \left[ i\hbar c \left(\alpha_0 \frac{\partial}{c \partial t} + \sum_{j=1}^3 \alpha_0 \alpha_j \frac{\partial}{\partial x_j} \right) - mc^2 \right] \psi = 0.

Теперь определим четыре гамма матрицы:

 \gamma^0 \ \stackrel{\mathrm{def}}{=}\  \alpha_0 \,,\quad \gamma^j \ \stackrel{\mathrm{def}}{=}\  \alpha_0 \alpha_j.

Эти матрицы обладают тем свойством, что

\left\{\gamma^\mu , \gamma^\nu \right\} = 2\eta^{\mu\nu} \cdot I\,,\quad \mu,\nu = 0, 1, 2, 3

где η метрика плоского пространства. Эти соотношения определяют алгебру Клиффорда называемую алгеброй Дирака.

Уравнение Дирака теперь можно записать используя четыре-вектор x = (ct,x), как

\left(i\hbar c \, \sum_{\mu=0}^3 \; \gamma^\mu \, \partial_\mu - mc^2 \right) \psi = 0.

В этой форме уравнение Дирака можно получить с помощью нахождения экстремума действия

\mathcal{S} = \int \bar\psi(i \hbar c \, \sum_\mu \gamma^\mu \partial_\mu - mc^2)\psi \, d^4 x

где

\bar\psi \ \stackrel{\mathrm{def}}{=}\  \psi^\dagger \gamma_0

называется дираковской присоединённой матрицей для ψ. Это основа для использования уравнения Дирака в квантовой теории поля.

В этой форме электромагнитное взаимодействие можно просто добавить расширив частную производную до калибровочноковариантной производной:

\partial_\mu \rightarrow D_\mu = \partial_\mu - i e A_\mu.

Запись с использованием "Feynman slash" Править

Иногда используется запись с использованием "перечёркнутых матриц" ("Feynman slash"). Приняв обозначение

a\!\!\!/ \leftrightarrow \sum_\mu \gamma^\mu a_\mu,

видим, что уравнение Дирака можно записать как

(i \hbar c \, \partial\!\!\!/ - mc^2) \psi = 0

и выражение для действия записывается в виде

\mathcal{S} = \int \bar\psi(i \hbar c \, \partial \!\!\!/ - mc^2)\psi \, d^4 x.


Дираковские билинейные формы Править

Имеется пять различных (нейтральных) дираковских билинейных форм без производных:

где \sigma^{\mu\nu}=\frac{i}{2} \left[\gamma^{\mu},\gamma^{\nu}\right]_{-} и \gamma^{5}=\gamma_{5}=\frac{i}{4!}\epsilon_{\mu\nu\rho\lambda}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\lambda}=i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} .


Примечания Править

  1. Удобный, хотя не единственный, выбор альфа-матриц Дирака такой:
    \alpha_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \quad \alpha_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} ,
    \alpha_2 = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i& 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix} \quad \alpha_3 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} .
    Они могут быть компактно записаны как блочные матрицы с использованием матриц Паули σ123, дополненных единичной матрицей I:
    
\alpha_0 = \begin{bmatrix} I & 0\\ 0 & -I \end{bmatrix} \quad 
\alpha_1 = \begin{bmatrix} 0 & \sigma_1\\ \sigma_1 & 0\end{bmatrix}
\alpha_2 = \begin{bmatrix} 0 & \sigma_2\\ \sigma_2 & 0\end{bmatrix}
\alpha_3 = \begin{bmatrix} 0 & \sigma_3\\ \sigma_3 & 0\end{bmatrix}
.
    Для ковариантной записи уравнения Дирака, действия для биспинорного поля итп используются определяемые через альфа-матрицы гамма-матрицы.

См. также Править

Внешние ссылки Править

Лекции по квантовой физике

Литература Править

  • Dirac, P.A.M., Principles of Quantum Mechanics, 4th edition (Clarendon, 1982)
  • Shankar, R., Principles of Quantum Mechanics, 2nd edition (Plenum, 1994)
  • Bjorken, J D & Drell, S, Relativistic Quantum mechanics
  • Thaller, B., The Dirac Equation, Texts and Monographs in Physics (Springer, 1992)
  • Schiff, L.I., Quantum Mechanics, 3rd edition (McGraw-Hill, 1955)

Выбранные статьи Править


Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Уравнение Дирака. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики