Virtual Laboratory Wiki
Регистрация
Advertisement

Уравнение Клейна — Гордона (Уравнение Клейна — Гордона — Фока):

или, кратко, используя вдобавок естественные единицы (где ):

где  — оператор Д’Аламбера.

— является релятивистской версией уравнения Шрёдингера. Используется для описания быстро движущихся частиц, имеющих массу (массу покоя). Строго применимо к описанию скалярных массивных полей (впрочем, пока с определенностью не известных в фундаментальной физике).

Кроме прочего, легко видеть, что уравнение Клейна — Гордона — Фока является обобщением волнового уравнения, подходящего для описания безмассовых скалярных и векторных полей.

Механические системы (реальные или воображаемые), описывающиеся уравнением Клейна — Гордона, могут быть простыми модификациями систем, описывающихся волновым уравнением, например:

  • в одномерном случае — натянутая тяжелая нить, лежащая (приклеенная) на упругой (гуковской) подкладке.
  • макроскопически изотропный кристалл, каждый атом которого находится, кроме связи с соседними атомами, еще и в фиксированной в пространстве квадратичной потенциальной яме.
  • более реалистично, если говорить о реальных кристаллах, рассмотреть моды поперечных колебаний, при которых, например, соседние слои атомов колеблются в противофазе: такие моды (в линейном приближении) будут подчиняться двумерному уравнению Клейна — Гордона в координатах, лежащих в плоскости слоев.

Уравнение, в котором последний («массовый») член имеет знак, противоположный обычному, описывает в теоретической физике тахион. Такой вариант уравнения также допускает простую механическую реализацию.

Уравнение Клейна — Гордона для свободной частицы (которое и приведено выше) имеет простое решение в виде синусоидальных плоских волн.

  • Замечание: положив пространственные производные нулю (что в квантовой механике соответствует нулевому импульсу частицы), мы имеем для обычного уравнения Клейна — Гордона гармонический осциллятор с частотой , что соответствует ненулевой энергии покоя, определяемой массой частицы. Тахионный же вариант уравнения в этом случае неустойчив, а решение его включает в общем случае неограниченно возрастающую экспоненту.

История[]

Уравнение Клейна — Гордона первоначально записал Эрвин Шрёдингер до записи нерелятивистского уравнения, которое носит сейчас его имя. Он отказался от него, потому что не смог включить спин электрона в уравнение. Шрёдингер сделал упрощение уравнения Клейна — Гордона и нашёл «своё» уравнение.

В 1926 году, вскоре после публикации уравнения Шрёдингера, Фок написал статью о его обобщении на случай магнитных полей, где силы зависели от скорости и независимо вывел это уравнение. И Клейн, и Фок использовали метод Калуцы — Клейна. Фок также ввёл калибровочную теорию для волнового уравнения.

Вывод[]

  • (Здесь использованы естественные единицы где ).

Уравнение Шрёдингера для свободной частицы записывается так:

где  — оператор импульса, оператор же  — будем называть, в отличие от гамильтониана, просто оператором энергии.

Уравнение Шрёдингера не является релятивистски ковариантным, то есть не согласуется со специальной теорией относительности (СТО).

Используем релятивистское соотношение, связывающее энергию и импульс (из СТО):

Тогда просто подставляя квантовомеханическиe оператор импульса и оператор энергии [1] — получаем:

что в ковариантной форме запишется так:

где  — оператор Д’Аламбера.

Решение уравнения Клейна — Гордона для свободной частицы[]

Искать решение уравнения Клейна — Гордона для свободной частицы

можно, как и для любого линейного дифференциального уравнения с постоянными коэффициентами, в виде суперпозиции (то есть любой, конечной или бесконечной линейной комбинации) плоских волн:

подставляя же каждую такую волну в уравнение, получаем условие на и :

Плоская волна, как легко заметить, описывает чистое состояние с определенной энергией и импульсом (то есть является собственной функцией соответствующих операторов). Энергия и импульс (то есть собственные значения этих операторов), исходя из этого, могут быть для нее просто посчитаны, как и в случае нерелятивистской частицы:

Найденное соотношение и тогда (снова) дает уравнение связи между энергией и импульсом релятивистской частицы с ненулевой массой, известное из классики:

Причем легко видеть, что соотношение для средних величин будет выполняться не только для состояний с определенной энергией и импульсом, но и для любой их суперпозиции, то есть для любого решения уравнения Клейна — Гордона (что, в частности, обеспечивает выполнение этого соотношения и в классическом пределе).

Для безмассовых частиц мы можем положить в последнем уравнении. Тогда получим для безмассовых частиц закон дисперсии (он же соотношение энергии и импульса) в виде:

Использовав формулу групповой скорости , нетрудно получить обычные релятивистские формулы связи импульса и энергии со скоростью; в принципе, того же результата можно добиться и просто посчитав коммутатор гамильтониана с координатой, но в случае уравнения Клейна — Гордона мы сталкиваемся с трудностью выписать гамильтониан в явном виде [2] (очевиден только квадрат гамильтониана).

Примечания[]

  1. Можно было бы просто извлечь корень из оператора в скобках в левой части уравнения
    то есть найти таким образом гамильтониан, тогда в правой части осталась бы первая производная по времени, и аналогия с уравнением Шрёдингера была бы еще более непосредственной и прямой. Однако утверждается, что для случая скалярного (или векторного) поля невозможно проделать это так, чтобы получившийся гамильтониан был локальным. Для случая же биспинорного Дираку удалось получить таким образом локальный (и даже с производными лишь первого порядка) гамильтониан, получив этим самым так называемое уравнение Дирака (все решения которого, кстати, являются и решениями уравнения Клейна — Гордона, но не обратно).
  2. см. примечание 1.

См. также[]

Внешние ссылки[]



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Уравнение Клейна — Гордона. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement