Фэндом

Виртуальная лаборатория

Фотоэффект

204 622статьи на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться
Квантовая механика
\Delta x\cdot\Delta p \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение ...

Математическая формулировка ...


Versuch zum Fotoeffekt.png

Схема эксперимента по исследованию фотоэффекта. Из света берется узкий диапазон частот и направляется на катод внутри вакуумного прибора. Напряжением между катодом и анодом устанавливается энергетический порог между ними. По току судят о достижении электронами анода.

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

История открытия Править

В 1839 году Александр Беккерель наблюдал[1] явление фотоэффекта в электролите. В 1873 году Виллоби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается. Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения. В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта. Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

 h \nu = A_{out} + \frac{mv^2}{2}

где A_{out} — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), \frac{mv^2}{2}кинетическая энергия вылетающего электрона, \nu — частота падающего фотона с энергией h \nu , hпостоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже не достаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, на работу, которую необходимо совершить для того, чтобы «вырвать» электрон, и остаток переходит в кинетическую энергию электрона.

Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.

Внешний фотоэффект Править

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений.

Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.

Законы внешнего фотоэффекта Править

  1. Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
    I_n~E_e и n_{\rm cek}~E_e
  2. Для данного фотокатода максимальная начальная скорость фотоэлектронов зависит от частоты распространяющихся электромагнитных колебаний и не зависит от его интенсивности.
  3. Для каждого фотокатода существует красная граница фотоэффекта, то есть минимальная частота электромагнитного излучения \nu_0 при которой фотоэффект ещё возможен.

Внутренний фотоэффект Править

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.

Фотопроводимость Править

Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.

Вентильный фотоэффект Править

Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).

Фотовольтаический эффект Править

Фотовольтаический эффект — возникновение электродвижущей силы под действием электромагнитного излучения.[2]

Современные исследования Править

Как показали эксперименты в национальном метрологическом институте Германии Physikalisch-Technische Bundesanstalt, результаты которых опубликованы 24 апреля 2009 года в Physical Review Letters[3], в мягком рентгеновском диапазоне длин волн при плотности мощности на уровне нескольких петаватт (1015 Вт) на квадратный сантиметр общепринятая теоретическая модель фотоэффекта может оказаться неверной.

Сравнительные количественные исследования различных материалов показали, что глубина взаимодействия между излучением и веществом существенно зависит от структуры атомов этого вещества и корреляции между внутренними электронными оболочками. В случае c ксеноном, который использовался в экспериментах, воздействие пакета фотонов в коротком импульсе приводит, по всей видимости, к одновременной эмиссии множества электронов с внутренних оболочек.[4]

Примечания Править

Разделы физики
Экспериментальная физика | Теоретическая физика
Механика | Специальная теория относительности | Общая теория относительности | Космология | Молекулярная физика | Термодинамика | Статистическая физика | Физическая кинетика | Электродинамика | Оптика | Акустика | Физика плазмы | Физика конденсированного состояния | Атомная физика | Квантовая физика | Квантовая механика | Квантовая теория поля | Ядерная физика | Физика элементарных частиц | Теория колебаний | Нелинейная динамика | Метрология | Астрофизика | Геофизика | Биофизика | Радиофизика | Материаловедение | Физика атмосферы | Химическая физика | Физическая химия | Математическая физика

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики